DWLBC REPORT

Regional Disposal Strategy

- Renmark Group Deep

Aquifer Injection Phase IIb

Preliminary Pumping and

Injection Trials

2009/01 - part 1

Regional Disposal Strategy – Renmark Group Deep Aquifer Injection

Phase IIb Preliminary Pumping and Injection Trials

Paul Magarey and Stephen Howles

Science, Monitoring and Information Division
Department of Water, Land and Biodiversity Conservation

January 2009

Report DWLBC 2009/01

Science, Monitoring and Information Division

Department of Water, Land and Biodiversity Conservation

25 Grenfell Street, Adelaide

GPO Box 2834, Adelaide SA 5001

Telephone National (08) 8463 6946

International +61 8 8463 6946

Fax <u>National</u> (08) 8463 6999

International +61 8 8463 6999

Website www.dwlbc.sa.gov.au

Disclaimer

The Department of Water, Land and Biodiversity Conservation and its employees do not warrant or make any representation regarding the use, or results of the use, of the information contained herein as regards to its correctness, accuracy, reliability, currency or otherwise. The Department of Water, Land and Biodiversity Conservation and its employees expressly disclaims all liability or responsibility to any person using the information or advice. Information contained in this document is correct at the time of writing.

© Government of South Australia, through the Department of Water, Land and Biodiversity Conservation 2009

This work is Copyright. Apart from any use permitted under the Copyright Act 1968 (Cwlth), no part may be reproduced by any process without prior written permission obtained from the Department of Water, Land and Biodiversity Conservation. Requests and enquiries concerning reproduction and rights should be directed to the Chief Executive, Department of Water, Land and Biodiversity Conservation, GPO Box 2834, Adelaide SA 5001.

ISBN 978-1-921528-25-5

Preferred way to cite this publication

Magarey, P and Howles, S (2009). Regional Disposal Strategy, Renmark Group Deep Aquifer Injection: Phase II b, Preliminary Pumping and Injection Trials. DWLBC Report 2009/01, Government of South Australia, through Department of Water, Land and Biodiversity Conservation, Adelaide

Download this document at: http://www.dwlbc.sa.gov.au/publications/reports/html

FOREWORD

South Australia's unique and precious natural resources are fundamental to the economic and social wellbeing of the State. It is critical that these resources are managed in a sustainable manner to safeguard them both for current users and for future generations.

The Department of Water, Land and Biodiversity Conservation (DWLBC) strives to ensure that our natural resources are managed so that they are available for all users, including the environment.

In order for us to best manage these natural resources it is imperative that we have a sound knowledge of their condition and how they are likely to respond to management changes. DWLBC scientific and technical staff continues to improve this knowledge through undertaking investigations, technical reviews and resource modelling.

Scott Ashby
CHIEF EXECUTIVE
DEPARTMENT OF WATER, LAND AND BIODIVERSITY CONSERVATION

ACKNOWLEDGEMENTS

Particular thanks is expressed to Phil Paterson and the Groundwater Technical Services team (DWLBC) for organising and conducting the airlift-recovery tests, injection tests and groundwater sampling; Kevin Dennis (DWLBC) for scientific and technical input, Zoë Marsden (DWLBC) for project management, and Karen Barry (CSIRO) for undertaking laboratory analyses. During the course of the work numerous discussions were had regarding technical issues with Mr Don Armstrong of Lisdon Associates who also conducted a technical review of the report.

CONTENTS

F	OREV	NORD	iii
Α	CKNO	OWLEDGEMENTS	v
E	XECL	JTIVE SUMMARY	1
1.	. IN	TRODUCTION	3
2.	All	RLIFT-RECOVERY TESTING	5
	2.1	OBJECTIVES	5
	2.2	PREPARATION FOR AIRLIFT-RECOVERY TESTING	6
		2.2.1 Construction of holding dams	6
		2.2.2 Well headworks – injection pipework	8
		2.2.3 Data Recording	8
	2.3	AIRLIFT-RECOVERY TEST 1	10
	2.4	AIRLIFT-RECOVERY TEST 2	
	2.5	AIRLIFT-RECOVERY TEST 3	
	2.6	WELL AND AQUIFER HYDRAULICS	16
		2.6.1 Hydraulic behaviour of observation well under pumping stress	
		2.6.2 Hydraulic behaviour of aquifer under pumping stress	16
3.	IN.	JECTION TESTING - WARINA SANDS TO WARINA SANDS	19
	3.1	OBJECTIVES	19
	3.2	PREPARATION FOR INJECTION TESTING	19
		3.2.1 Site infrastructure	19
		3.2.2 Data recording	
	3.3	INJECTION TEST 1	
	3.4	INJECTION TEST 2	
	3.5	INJECTION TEST 3	
	3.6	INJECTION TEST 4	
	3.7	WELL AND AQUIFER HYDRAULICS	
		3.7.1 Hydraulic behaviour of observation well under injection stress	
		3.7.2 Hydraulic behaviour of aquifer under injection stress	
4.	GF	ROUNDWATER SAMPLING	29
	4.1	OBJECTIVES	29
	4.2	SAMPLING METHODOLOGY	30
	4.3	RESULTS	30
	44	DISCUSSION	33

5. IN	JECTION TESTING – MONOMAN FORMATION TO WARINA SANDS	35
5.1	OBJECTIVES	35
5.2	PREPARATION FOR INJECTION TESTING	35
	5.2.1 Filtration	35
	5.2.2 Data Recording	35
	INJECTION TEST	
5.4	WELL AND AQUIFER HYDRAULICS	37
6. CC	DNCLUSIONS AND RECOMMENDATIONS	39
6.1	CONCLUSIONS	39
6.2	RECOMMENDATIONS	39
APPE	NDICES	43
UNITS	OF MEASUREMENT	127
GLOS	SARY	129
REFE	RENCES	133

LIST OF FIGURES

Figure 1. Study site near Werta Wert wetland, Chowilla	4
Figure 2. Small dam	6
Figure 3. Large dam	7
Figure 4. 150 mm PVC pipe connecting the dams	7
Figure 5. Downhole logger attached to the air-exit pipe	8
Figure 6. Airlifting looking east	9
Figure 7. Residual drawdown during Test 1 (airlifting at 9.5 L/s)	10
Figure 8. Residual drawdown during first 180 seconds of Test 1	11
Figure 9. Residual drawdown during Test 2 (airlifting at 11.8 L/s)	12
Figure 10. Residual drawdown during the first 300 seconds of Test 2	13
Figure 11. Residual drawdown during airlifting Test 3 (airlifting at 13.0 L/s)	14
Figure 12. Residual drawdown during the first 480 seconds of Test 3	15
Figure 13. Network of pipes connecting the holding tanks to the pump	20
Figure 14. Well headworks	21
Figure 15. Injection head during Test 1 (injecting at 3 L/s)	22
Figure 16. Injection head during Test 2 (injecting at 6 L/s)	23
Figure 17. Injection head during Test 3 (injecting at 9 L/s)	24
Figure 18. Injection head during Test 4 (injecting at 12 L/s)	25
Figure 19. Injection head at 100 minutes vs. injection rate at 3, 6, 9 and 12 L/s	27
Figure 20. Injection head during Monoman Sands to Warina Sands Injection Test	38
LIST OF TABLES	
Table 1: Airlift-recovery test details	5
Table 2: Injection test details	19
Table 3: Suspended solids and turbidity results from wells completed in the Monoman Formation across the Chowilla floodplain	29
Table 4: Groundwater quality results from the Warina Sands and Monoman Formation	32
Table 5: Groundwater MFI and PSD results from the Warina Sands and	
Monoman Formation	33

EXECUTIVE SUMMARY

The potential for the disposal of saline groundwater pumped from a shallow water table aquifer (Monoman Formation) into a deep regionally confined aquifer (Renmark Group) has been investigated over the past 3 years in the Chowilla region, South Australia. Phase I included a desktop study to identify a target aquifer (the Warina Sands) while Phase II involved the construction of a 450 m deep investigation well which was completed as an observation well. Due to the small diameter of this well, traditional pumping tests could not be conducted to determine well hydraulic behaviour and estimate aquifer transmissivity. Phase IIb was commissioned in an attempt to obtain this information.

Phase IIb pumping and injection trials involved airlift pump testing and preliminary injection testing. Transmissivity was estimated at ~70 m²/day using Logan's approximation, which utilises corrected drawdown data. The testing procedure recognised the limitation of the results due to the 100 mm diameter well in which considerable friction losses occurred. Minor anomalies in the airlifting and injection data were also encountered due to temperature changes in the water column in the well brought about by the airlifting of warm (35°C) native Warina Sands groundwater and injection of relatively cooler (21°C) Monoman Formation groundwater.

Groundwater sampling of a nearby Monoman Formation production well and sampling of Warina Sands observation well 7030-809 was undertaken to gain further understanding of the physiochemical attributes of the injectant and of the native groundwater. The results indicate that the injectant requires filtration with an appropriately sized filter prior to injection.

The results of the Phase IIb trial indicate that deep aquifer disposal of saline groundwater in the Chowilla region is technically feasible. Given the limitations resulting from the casing diameter of the existing well, it is recommended that a Phase III injection trial utilising a large diameter injection well be undertaken.

For a Phase III injection trial to proceed, due consideration must be given to the design of the injection well, location of Monoman Formation production wells, and disposal of groundwater produced during development and pumping tests. Filtration and backflushing capabilities must be incorporated into the design to allow for routine backflushing of the injection well.

1

1. INTRODUCTION

The Science, Monitoring and Information Division has undertaken work on the Chowilla Floodplain in relation to the potential for deep aquifer disposal of saline groundwater pumped from water table aquifers (Monomon Formation) since 2005. Work to date has included a Desktop Study (Phase 1) which was completed in November 2005 (Rammers *et al*, 2005), and a Feasibility Study (Phase II) which was completed in December 2007 (Magarey and Osei-Bonsu, 2008). Work has focussed on the deep confined Warina Sands at the base of the Renmark Group.

The Phase II Feasibility Study involved the construction of a 450 m deep artesian observation well (Unit Number 7030-809) completed in the Warina Sands, a geochemical modelling/clogging study, and a seismic hazard risk assessment. Results from Phase II indicate the Warina Sands was of sufficient thickness and permeability to receive saline groundwater (injectant), however this was not quantified to the level of detail required to commit to the proposed Phase III injection trial.

The current phase of work was implemented in order to obtain preliminary information on well hydraulic behaviour and aquifer transmissivity using an approach not considered during Phase II. This approach was required due to the limitations imposed by the original decision to complete well 7030-809 with 100 mm ID casing (note that during the planning of this well no testing had been considered). The investigation involved conducting airlift—recovery tests and injection tests. The airlift—recovery testing used a methodology similar to that outlined by Smith (1982). This method, which was used successfully for water supply investigations in the southeast of South Australia, involves airlift pumping of relatively small diameter wells and analysing the recovery curve. This method was applied to well 7030-809 located near Werta Wert wetland on the Chowilla Floodplain.

In total, three airlift–recovery tests, four short–term injection tests (up to eight hours), and one longer–term injection test (ten days) were conducted between March and June 2008. The initial short–term injection tests were conducted using groundwater collected and stored from the Warina Sands, and the longer–term test was conducted using groundwater pumped from Monoman Formation production well 7030-710 located 1.5 km to the south. Groundwater sampling was also undertaken on Warina Sands observation well 7030-809 and Monoman Formation production well 7030-710. The location of the investigation site is given in Figure 1.

The key objectives of this investigation, as outlined in the Project Brief, were to:

- 1. Characterise the hydraulics of observation well 7030-809 and the Warina Sands at the investigation site.
- 2. Characterise the clogging potential of the Monoman Formation groundwater.
- 3. Gain a preliminary understanding of hydraulic behaviour of well 7030-809 under injection using Warina Sands groundwater and Monoman Formation groundwater.

2. AIRLIFT-RECOVERY TESTING

The following sections outline the objectives, methodology and results of the airlift–recovery testing conducted on observation well 7030-809. DWLBC Groundwater Technical Services conducted all on site works.

Three separate constant rate airlift–recovery tests (summarised in Table 1) were conducted on observation well 7030-809 at pumping rates of 9.5, 11.8 and 13.0 L/s. Testing commenced on 27 March 2008. Results from the airlift–recovery tests are plotted as residual drawdown in metres vs. time in seconds. Two graphs are presented for each of the tests, with the latter showing potentiometric head in the well during the initial minutes of recovery. Data for the recovery testing is provided in Appendix 1. Residual drawdown is signed positive, and therefore a head developing above the initial potentiometric head in the well must be signed negative (as is injection head which develops during injection testing).

In pumping and injecting into the Warina Sands, considerable pipe friction losses occur due to the great length of small diameter casing (398 m of 100 mm ID fibreglass reinforced plastic (FRP)). At a pumping rate of 12 L/s these pipe friction losses are ~1.96 m per 100 m of casing. This effect results in water levels observed at the surface (under pumping conditions) being less than the potentiometric pressures, which would be observed at the well/aquifer interface (under injecting conditions the reverse applies). In this report the uncorrected data has been reported and graphed. However, when data has been used for calculating aquifer transmissivity it is important to apply the correction, and this has been done where relevant. Temperature and density also affects the observed water levels, but to a lesser degree.

Table 1: Airlift-recovery test details

Test	Date	Depth of air injection line below TOC (m)	Airlift pressure (kPa)	Pumping rate (L/s)	Test duration (mins)	Maximum drawdown (m)	Time until recovery following cessation of airlifting (s)
1	27/3/2008	21	~689	9.5	240	13.0	~ 90
2	28/3/2008	51	~689	11.8	240	24.3	120
3	29/3/2008	81	~689	13.0	480	27.7	240

2.1 OBJECTIVES

The objectives of the airlift–recovery testing were to:

- 1. Gain a preliminary understanding of well hydraulic behaviour of observation well 7030-809 under pumping (including well loss and aquifer loss).
- 2. Characterise the Warina Sands by quantifying (as far as practical) the transmissivity.

2.2 PREPARATION FOR AIRLIFT-RECOVERY TESTING

2.2.1 CONSTRUCTION OF HOLDING DAMS

Two new dams were constructed to accommodate groundwater produced during airlifting. The smaller dam had dimensions $7 \times 7 \times 1.5$ m while the larger dam had dimensions $35 \times 35 \times 2$ m. The capacity of the large dam was based on the expected volume of water produced during airlifting, which was estimated at ~2.5 ML if airlift–recovery pumping rates of 10, 15 and 20 L/s were obtained for a duration of eight hours each. The smaller dam was lined with plastic to prevent seepage, and discharge occurred initially to this dam with subsequent storage of the groundwater in the larger dam.

The two dams were connected by a 150 mm ID PVC pipe fitted with a flow meter to record the pumping rates. This method was adopted due to the pulsating nature of the airlift driven pumping which did not lend itself well to the traditional method of measuring flow rate directly from the well.

The holding dams are shown in Figures 2 through 4.

Figure 2. Small dam

Figure 3. Large dam

Figure 4. 150 mm PVC pipe connecting the dams with attached flow meter

2.2.2 WELL HEADWORKS - INJECTION PIPEWORK

The artesian well headworks were modified to include a T-piece, a 50 mm steel air injection line connected to an air compressor, and an outlet pipe diverting water into the small dam. The depth of the air injection line was increased for each of the three stages, which allowed the increased pumping rates.

2.2.3 DATA RECORDING

Potentiometric pressure in the observation well was recorded using an automated downhole logging device attached ~1.5 m below the bottom of the air injection line (Figure 5). The logger recorded baseline potentiometric pressure prior to airlifting and during recovery following the cessation of airlifting. Due to the turbulence that occurred during airlifting, the logger was only turned on several minutes before cessation of airlifting. The downhole logger recorded pressure in the well at intervals of ten seconds. Figure 6 is a photo taken during airlifting.

Figure 5. Downhole logger attached to the air-exit pipe

Figure 6. Airlifting looking east

2.3 AIRLIFT-RECOVERY TEST 1

Airlift–recovery Test 1 residual drawdown data following the cessation of airlifting is plotted in Figures 7 and 8. The following general comments can be made:

- 1. During the airlifting an average pumping rate of 9.5 L/s was achieved.
- 2. Prior to turning off the air compressor a drawdown of ~13.0 m developed.
- 3. Once the compressor was switched off, recovery occurred within ~30 seconds, the head rebounded above the initial potentiometric head. This effect may be the result of a column of air being trapped in the well on shutting of the air injection line and discharge line simultaneously.
- 4. The head stabilised in 90 seconds.
- 5. During the 60 minutes of recovery observation, the head in the well remained slightly above the initial head (~0.65 m). The reason for this discrepancy is likely to be density and viscosity changes brought about by the change in the temperature of the water column. Prior to airlifting the water column in the well was in equilibrium with the surrounding formation with a temperature gradient reducing from 35°C (native groundwater temperature) at the well screen to ~20°C at the well-head. During airlifting the water in the well column was displaced with warmer water from the aquifer. At the conclusion of the test, the temperature of the water column in the well was consistent with that of the ambient groundwater. It should be noted that the hydraulic conductivity is a function of density and viscosity that are affected by temperature (and gravity).

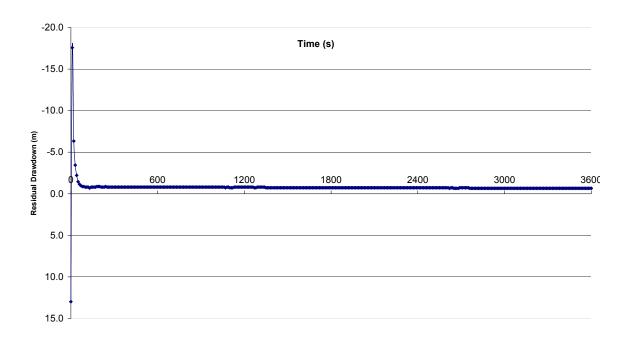


Figure 7. Residual drawdown during Test 1 (airlifting at 9.5 L/s)

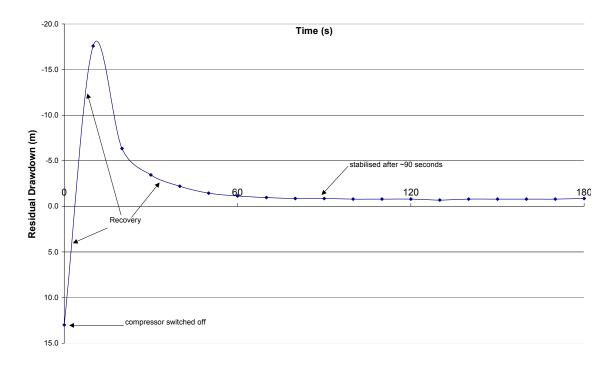


Figure 8. Residual drawdown during first 180 seconds of Test 1

2.4 AIRLIFT-RECOVERY TEST 2

Airlift–recovery Test 2 residual drawdown data following the cessation of airlifting is plotted in Figures 9 and 10. The following general comments can be made:

- During the airlifting an average pumping rate of 11.8 L/s was achieved.
- 2. Prior to turning off the air compressor a drawdown of 24.5 m developed.
- 3. Once the air compressor was switched off, recovery occurred in ~15 seconds with the head rebounding above the initial potentiometric head, but to a lesser degree than in Test 1, possibly due to the greater submergence of the air injection line.
- 4. The head stabilised in 120 seconds.
- 5. During the 50 minutes of recovery observation, the head in the well remained slightly above the initial head (~0.5 m). As for Test 1, this is attributed to the temperature change in the water column in the well.

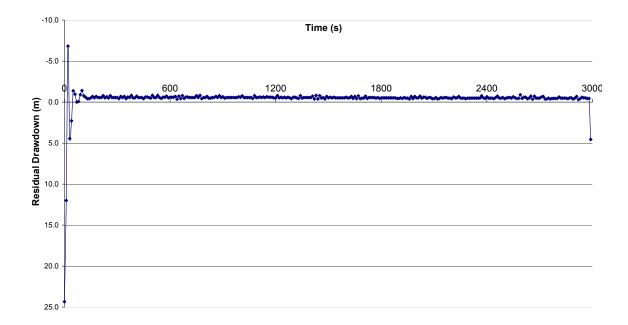


Figure 9. Residual drawdown during Test 2 (airlifting at 11.8 L/s)

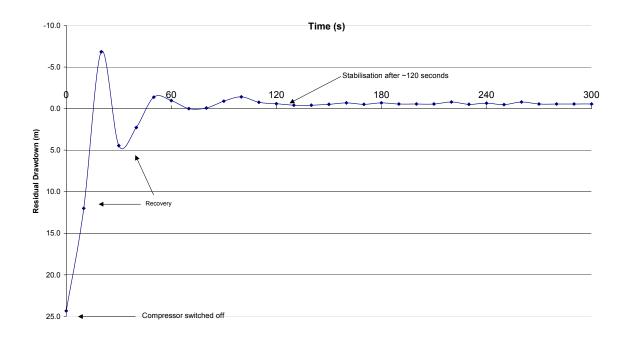


Figure 10. Residual drawdown during the first 300 seconds of Test 2

2.5 AIRLIFT-RECOVERY TEST 3

Airlift–recovery Test 3 residual drawdown data, following the cessation of airlifting is plotted in Figures 11 and 12. The following general comments can be made:

- 1. During the airlifting an average pumping rate of 13.0 L/s was achieved.
- 2. Prior to turning off the compressor a drawdown of 27.7 m developed.
- 3. Once the air compressor was switched off, recovery occurred within 70 seconds, with the head rebounding above the initial potentiometric head, but to a lesser degree than in Test 2. Similar to Test 2, this response is possibly due to the greater submergence of the air injection line.
- 4. The head stabilised in 240 seconds.
- 5. During the 60 minutes of recovery observation, the head in the well remained slightly above the initial head (0.01 m).

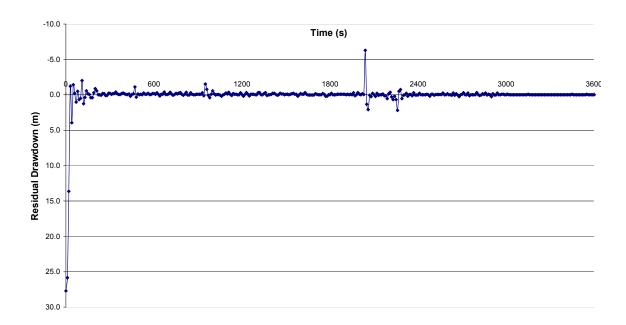


Figure 11. Residual drawdown during airlifting Test 3 (airlifting at 13.0 L/s)

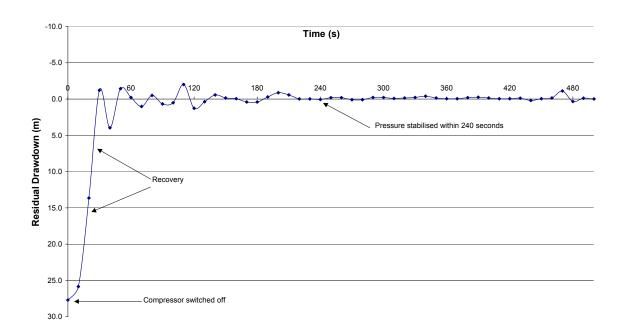


Figure 12. Residual drawdown during the first 480 seconds of Test 3

2.6 WELL AND AQUIFER HYDRAULICS

2.6.1 HYDRAULIC BEHAVIOUR OF OBSERVATION WELL UNDER PUMPING STRESS

The preliminary constant–rate airlift–recovery tests conducted on observation well 7030-809 indicate the hydraulic behaviour of the well under pumping stress. The following general comments can be made:

- 1. A maximum pumping rate of 13 L/s was achieved which resulted in the development of ~27 m of drawdown.
- 2. A specific capacity of 0.48 L/s per metre of drawdown is indicated at a pumping rate of 13 L/s
- 3. Assuming a (conservative) specific capacity of 0.4 L/s per metre of drawdown, it is possible the well could be pumped at 50 L/s with the (indicative) development of ~125 m of drawdown.
- 4. A well equation could not be determined from the test data.

2.6.2 HYDRAULIC BEHAVIOUR OF AQUIFER UNDER PUMPING STRESS

The preliminary constant–rate airlift–recovery tests conducted on the observation well 7030-809 indicate the hydraulic behaviour of the aquifer system under pumping stress. The following general comments can be made:

- 1. Drawdown was not observed during testing and transmissivity cannot be calculated from drawdown data.
- 2. An estimation of the transmissivity can be obtained from the residual drawdown data using Logan's approximation for confined aquifers (an approximation derived from the Thiem equation):

T = 1.22 Q / s

Where:

 $T = transmissivity (m^2/d)$

Q = pumping rate (m^3/day)

s = residual drawdown (m)

Using the data from airlift–recovery Test 3, i.e. the pumping rate of 13 L/s (1,123 m 3 /day) and a residual drawdown of 19.86 m (drawdown at the time the pumping ended, 27.7 m, corrected for pipe friction losses of 1.96 m per 100 m of FRP casing), a transmissivity of \sim 70 m 2 /d can be calculated. Note that Test 3 was selected as it was conducted at the highest pumping rate and for the longest duration.

3. The transmissivity estimated here (~70 m²/d) is considerably less than that reported in Magarey and Osei-Bonsu (2008) of 800 – 25,000 m²/d based on hydraulic conductivity values determined from particle size analysis. It is believed that this range is grossly in error due to the sample collection method being biased towards the coarser grain size fraction.

4. No hydraulic boundaries presented during the tests.

3. INJECTION TESTING - WARINA SANDS TO WARINA SANDS

The following sections outline the objectives, methodology and results of the injection testing conducted on observation well 7030-809 using Warina Sands groundwater. Groundwater Technical Services (DWLBC) conducted all on site works.

Four separate constant rate injection tests (summarised in Table 2) were conducted on observation well 7030-809 at injection rates of 3, 6, 9 and 12 L/s. Testing commencing on 31 March 2008 using groundwater sourced from the Warina Sands to ensure chemical compatibility and minimise the potential for any clogging. The duration of each test was dictated by the time it took for the holding tanks to be emptied at the prescribed injection rate. Sufficient time was allowed for full recovery before the commencement of each test. Results from the injection tests are plotted as injection head vs. time in minutes. Data for the injection testing and associated recovery is provided in Appendix 2. Injection head is signed negative.

Table 2: Injection test details

Test	Date	Injection rate (L/s)	Test duration (mins)	Time until recovery following cessation of injection (mins)
1	31/3/2008	3	500	< 1
2	2/4/2008	6	299	< 1
3	4/4/2008	9	200	< 1
4	5/4/2008	12	158	< 1

3.1 OBJECTIVES

The objectives of the injection testing were to:

- 1. Gain a preliminary understanding of well hydraulic behaviour of observation well 7030-809 under injection using Warina Sands groundwater.
- 2. If practical, through the development of a well equation, determine the long–term injection capacity of the well and aquifer, and the well and aquifer loss.

3.2 PREPARATION FOR INJECTION TESTING

3.2.1 SITE INFRASTRUCTURE

Four 30,000 L holding tanks were transported to the work site. The four tanks were linked together by connecting to a central 100 mm PVC pipe which was connected to the headworks of observation well 7030-809 (Figures 13 and 14). Prior to each test the tanks were filled to capacity using the artesian flow of the Warina Sands. This water was then reinjected back into the aguifer. Air was bled from the injection line prior to injection.

3.2.2 DATA RECORDING

Potentiometric pressure in the observation well was recorded using an automated downhole logging device installed at a depth of 10 m. A separate pressure transducer was installed at the top of the headworks thus providing independent validation for the downhole logging device. These devices recorded baseline potentiometric pressure prior to, during, and post injection. The downhole logger recorded at one minute intervals, and the surface transducer was read every one minute for the first ten minutes, every two minutes for the next 20 minutes, and between five and ten minutes for the remainder of the tests.

Field parameters of the injectant including temperature and electrical conductivity (EC) were measured using an FL-90 multi-parameter instrument fitted to a flow-through cell.

Figure 13. Network of pipes connecting the holding tanks to the pump

Figure 14. Well headworks

3.3 INJECTION TEST 1

Injection Test 1 was conducted at an injection rate of 3 L/s and lasted a total of 500 minutes. Injection head data is plotted in Figure 15. The following general comments can be made:

- 1. At the commencement of injection, the injection head increased to -9.5 m, before rebounding and reducing to -1.8 m at ten minutes. This response may be due to a mechanical effect within the aguifer surrounding the screen.
- 2. Continued injection resulted in an injection head of ~-2.6 m developing at ~400 minutes which remained stable until the end of the test.
- 3. At the end of the test, recovery occurred within one minute resulting in a head 0.55 m below the initial potentiometric level. Similar to airlifting, these anomalies are attributed to density and viscosity variations brought about by the change in the temperature of the water column resulting from the temperature difference between the injectant and the native groundwater. The stored groundwater (~21°C) is 14°C cooler than that of the Warina Sands (35°C).

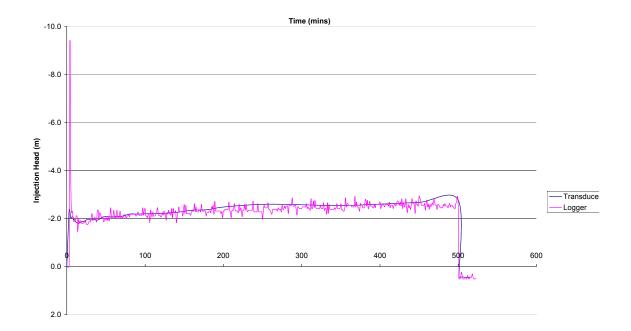


Figure 15. Injection head during Test 1 (injecting at 3 L/s)

3.4 INJECTION TEST 2

Injection Test 2 was conducted at a rate of 6 L/s and lasted a total of 299 minutes. Injection head data is plotted in Figure 16. The following general comments can be made:

- 1. The injection head increased to -5.76 m at ten minutes, and then increased to -5.79 m by the end of the test.
- 2. The temperature range of the injectant was recorded 28.8 31.1°C.
- 3. At the end of the test recovery occurred within one minute. After 60 minutes the potentiometric level was 0.03 m below the initial level.

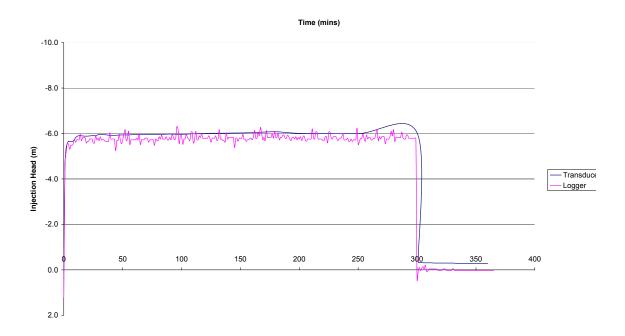


Figure 16. Injection head during Test 2 (injecting at 6 L/s)

3.5 INJECTION TEST 3

Injection Test 3 was conducted at a rate of 9 L/s and lasted for 200 minutes. Injection head data is plotted in Figure 17. The following general comments can be made:

- 1. The injection head increased to -10.03 m at ten minutes and then increased to -10.34 m by the end of the test.
- 2. The temperature of the injectant was recorded 29.3 31.1°C.
- 3. At the end of the test recovery occurred within one minute. After 60 minutes the potentiometric level was 0.03 m above the initial level.

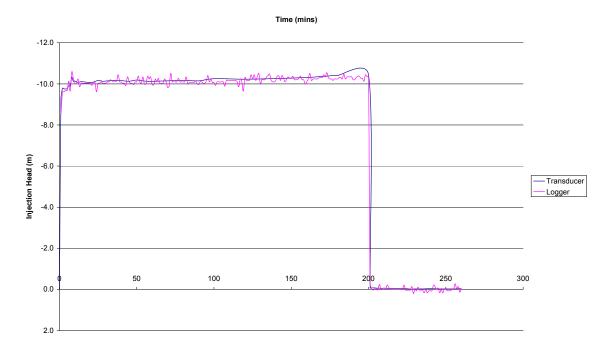


Figure 17. Injection head during Test 3 (injecting at 9 L/s)

3.6 INJECTION TEST 4

Injection Test 4 was conducted at a rate of 12 L/s and lasted a total of 154 minutes. Injection head data is plotted in Figure 18. The following general comments can be made:

- 1. The injection head increased to -15.55 m at ten minutes and then increased to -15.62 m at 64 minutes. The injection head fluctuated for the remainder of the test, and after 154 minutes was observed at -15.41 m.
- 2. The temperature of the injectant was not recorded due to a malfunction in the water quality instrument.
- 3. At the end of the test recovery occurred within one minute. After 28 minutes of recovery the potentiometric level was 0.21 m below the pre injection level.

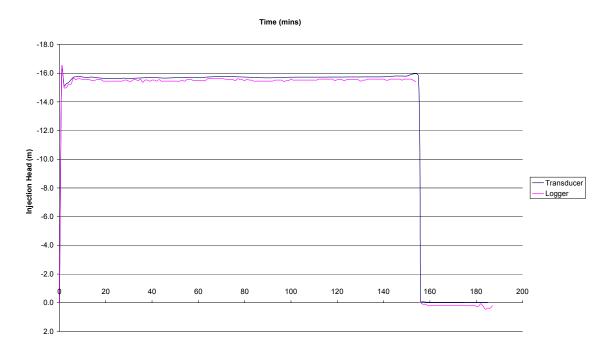


Figure 18. Injection head during Test 4 (injecting at 12 L/s)

3.7 WELL AND AQUIFER HYDRAULICS

3.7.1 HYDRAULIC BEHAVIOUR OF OBSERVATION WELL UNDER INJECTION STRESS

The preliminary constant–rate injection tests conducted on the observation well 7030-809 indicate the hydraulic behaviour of the well under injection stress. The following general comments can be made:

- 1. A maximum injection rate of 12 L/s was achieved which resulted in the development of ~-15.5 m of injection head.
- 2. A well equation for injection cannot be determined from the test data.
- 3. A specific capacity of 0.77 L/s per metre of injection head is indicated at an injection rate of 12 L/s. This is greater than the figure of 0.48 L/s per metre of drawdown that was indicated from airlift pumping Test 3, which was conducted at 13 L/s. This anomaly is due to density and temperature effects.
- 4. Assuming a specific capacity of 0.77 L/s per metre of injection head, in theory the well could be injected at 70 L/s with the (indicative) development of ~-100 m. However, reference to Figure 19, which is based on very limited data, indicates potential exponential growth in injection head with increasing injection rate. The figure indicates that an injection rate of 30 L/s may result in the development of up to -100 m of injection head. This apparent exponential growth is believed to be a result of the increasing pipe friction losses caused by the restrictive diameter of the casing (100 mm). This effect will be considerably less with a production well constructed with a 200 mm ID casing. Calculations by Mr Don Armstrong indicate that for a 200 mm ID casing, and injection rate of 50 L/s, an injection head of –50 m would develop.
- 5. While there is a slow development of injection head during the tests, there is no evidence of an increasing rate of injection head development in any individual test, thus indicating that no clogging occurred during the period of the tests.

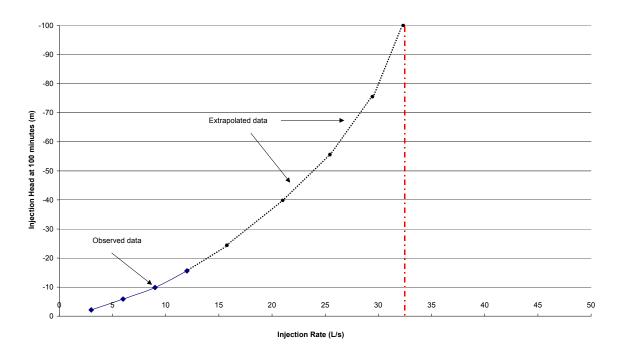


Figure 19. Injection head at 100 minutes vs. injection rate at 3, 6, 9 and 12 L/s. Extrapolation of the data gives an indication of possible head build up at higher injection rates

3.7.2 HYDRAULIC BEHAVIOUR OF AQUIFER UNDER INJECTION STRESS

The preliminary constant–rate injection tests conducted on the observation well 7030-809 indicate the hydraulic behaviour of the aquifer system under injection stress. The following general comments can be made:

- 1. While a transmissivity value can be determined from the injection head data, by applying Logan's approximation in a similar manner to the airlift–recovery testing, the results indicate values ~1.4 times higher than that observed under pumping conditions. This is due to the 'resistive' effects of injection resulting from the temperature difference between the injectant and the native groundwater. Theoretically, the most reliable results will be obtained when flow is out of the aquifer at the ambient aquifer temperature in which case the density and viscosity effects are not operating. Forcing cooler water into a warm aquifer is the least favourable scenario.
- 2. A well equation could not be developed for injection.
- 3. No hydraulic boundaries presented during the period of the tests.
- 4. Recovery occurred within one minute. This behaviour is commensurate with that of a very leaky aquifer system in which almost instantaneous injection head build—up develops, which is then followed by very little change. This is likely to be reflective of the ~50 m thick section of aquifer (in which the 30 m long well screen is set) being in hydraulic communication with the very much thicker Renmark Group (~200 m).

4. GROUNDWATER SAMPLING

4.1 OBJECTIVES

Sampling was undertaken to determine the level of suspended solids and turbidity of the Monoman Formation groundwater to aid in filter selection for the Monoman Sands to Warina Sands Injection Test, and to gain a greater understanding of the physical attributes of the injectant. Previous sampling indicates that suspended solids and turbidity in Monoman Formation groundwater is variable across the Floodplain with ranges 6 – 76 mg/L, and 2.3 – 140 NTU respectively. The results from previous sampling are given in Table 3.

Table 3: Suspended solids and turbidity results from wells completed in the Monoman Formation across the Chowilla floodplain

Location	Unit Number	Date	Screen Interval (m)	Total suspended solids (mg/L)	Turbidity (NTU)
Werta Wert	7030-759	11/04/2007	10-12	30	41
Werta Wert	7030-765	11/04/2007	8.5-10.5	15	27
Werta Wert	7030-756	11/04/2007	4.5-6.5	36	140
Werta Wert	7030-712	11/04/2007	15.07-17.07	16	10
Gum Flat	7030-577	03/05/2005	10-14	73	na
Coppermine	7030-695	03/05/2005	5.76-8.76	55	na
Tareena	7130-56	03/05/2005	3.10-6.10	56	na
Tareena	7130-33	06/06/2003	12-18	25	12
Tareena	7130-33	18/12/2002	12-18	16	16
Tareena	7130-33	12/12/2002	12-18	13	16
Gum Flat	7030-577	06/12/2002	10-14	6	7.2
Gum Flat	7030-577	28/11/2002	10-14	24	26
Gum Flat	7030-577	21/11/2002	10-14	33	19
Gum Flat	7030-577	14/11/2002	10-14	76	21
Gum Flat	7030-577	08/11/2002	10-14	10	2.3

It was recognised that some previous samples were collected from observation wells. Subsequently, questions were raised as to the reliability of these samples to give a true indication of the suspended solids of the groundwater. Current sampling was undertaken to determine whether lower values could be obtained from a screened (wirewound) production well (7030-710) completed in the Monoman Formation, and pumped over a 48-hour period. Sampling of the Warina Sands observation well 7030-809 was also undertaken.

4.2 SAMPLING METHODOLOGY

Sampling of observation well 7030-809 occurred on 23/4/2008 from 10:00 until 20:30 (total pumping time 10.5 hours). Prior to sampling, field parameters were measured using a YSI (Yellow Springs Instruments) multi-parameter instrument calibrated to known standards. The flow rate was held constant at 8 L/s, and four sets of samples were collected at 14:30, 16:30, 18:30 and 20:30. Samples were submitted to Australian Water Quality Centre (AWQC) for analysis of total suspended solids, turbidity, major ions and nutrients. A further three 15 L samples were collected at 15:20, 17:00 and 19:30 and submitted to CSIRO for particle size distribution (PSD) and membrane filtration index (MFI).

Sampling of production well 7030-710 occurred from 11:00 24/4/2008 to 08:00 26/4/2008 (total pumping time 45 hours). Field parameters including temperature, specific conductance, pH, dissolved oxygen (DO) and oxidation-reduction potential (ORP) were measured with a YSI-multi parameter instrument and a FL-90 flow through cell. Pumping was held constant at rate of ~10 L/s. Ten sets of samples were collected at 1, 3, 6, 10, 15, 20, 30, 35, 40 and 45 hrs. Samples were submitted to AWQC for major ions, suspended solids, volatile suspended solids, turbidity, iron bacteria, nutrients, phosphorus, soluble iron, soluble manganese, and dissolved organic carbon. A further six 15 L samples were collected at 1, 3, 10, 20, 35 and 45 hours and submitted to CSIRO for PSD and MFI.

NB: MFI is another index of physical clogging potential that better accounts for the effect of particle size and composition. MFI is a laboratory-based measure of the potential for physical clogging of a $0.45~\mu m$ membrane filter (Dillon et al., 2001). The greater the retention of particles on the filter, the greater the MFI value (reported in units of s/L²) and hence also the rate of physical clogging. Note that chemically and biologically derived forms of clogging are not accounted for due to the nature and brevity of the test procedure (Pavelic et al, 2007).

4.3 RESULTS

Groundwater quality data from the sampling is given in Table 4 while the raw data provided by AWQC is given in Appendix 3. The following general comments can be made:

- 1. Monoman Formation groundwater
 - a. Total suspended solids ranges 8 18 mg/L (average of 10.6 mg/L).
 - b. Temperature 20.70 21.35 °C.
- 2. Warina Sands groundwater
 - a. Total suspended solids ranges 5 13 mg/L (average of 8.6 mg/L).
 - b. Temperature 34.44 34.60 °C.

PSD and MFI results are given in Table 5. Graphs showing the PSD are also given in Appendix 4.

The following general comments can be made:

1. MFI from the Monoman Formation groundwater ranged 1.2 - 2.3 s/L².

- 2. The PSD of the Monoman Formation groundwater was variable. Samples collected within the first ten hours of pumping show a medium to high proportion of particles in the range of 1–10 microns (27 71% of total load). However, samples collected in the latter part of pumping (the final 25 hours) recorded a PSD with a particle size generally in the range 100 800 microns (82.84%, 71.11% and 71.55% of total load at 20, 35 and 45 hours respectively).
- 3. MFI for the Warina Sands groundwater was ranged $1.8 3.4 \text{ s/L}^2$.
- 4. The PSD₅₀ (the median) of for the Warina Sands groundwater was recorded between 284 and 395 microns.

Aquifer	WS	WS	WS	WS	MF									
Sample #/Description	Sample 1	Sample 2	Sample 3	Sample 4	1 hr	3 hrs	6 hrs	10 hrs	15 hrs	20 hrs	30 hrs	35 hrs	40 hrs	45 hrs
Unit number	7030-809	7030-809	7030-809	7030-809	7030-710	7030-710	7030-710	7030-710	7030-710	7030-710	7030-710	7030-710	7030-710	7030-710
Date sampled	23/04/2008		23/04/2008	23/04/2008	24/04/2008	24/04/2008	24/04/2008	24/04/2008	25/04/2008	25/04/2008	25/04/2008	26/04/2008	26/04/2008	3 26/04/2008
Field Parameters														
Time	14:30	16:30	18:30	20:30	12:10	14:30	17:20	21:20	2:20	7:20	17:20) 22:20	3:20	8:20
Temp (deg C)	35.60		35.43	35.44	21.35									
pH	6.82		6.87	6.88		6.28								
DO (mg/L)	0.05		0.03	0.03	0.11	0.11								
ORP (mV)	-241	-277.8	-284.6	-288.6	-9.9									
TDS (q/L)	21.84	21.8	21.81	21.79	33.81	33.81								
Specific conductance (uSiemens/cm)	33,590	33,507	33,589	33,510	52.009									
Specific Constitution (a Stationardin)		00,00.	00,000	33,0.0	52,555	02,011								
Laboratory Analysis														
Turbidity (NTU)	0.84	0.61	0.77	0.66	6.6	6.3	7.6	9.1	5.5	6	6.7	7.1	5.4	5.3
Suspended Solids (mg/L)	5	13	12	5	10	9	17	9	7	9	9	18	8	3 10
Volatile suspended solids (mg/L)					2	2	3	2	. 2	2	2	2	. 2	2 3
Iron bacteria (microscopic)	not detected													
Iron bacteria (heterotrophic /mL)	300	200	80	120	< 10	< 10	< 10	< 10	< 10	< 10	<10	<10	<10	< 10
Alkalinity as CaCO3 (mg/L)	353	356	352	354	246			246					248	
Bicarbonate (mg/L)	431	434	430	432	300	300	300	300			300	301	300	300
Carbonate (mg/L)	0	0	0	0	0	0	0	0	0	0		0	() (
Hydroxide (mg/L)	0	0	0	0	_	_	0	0	_	_	_	_	_	-
Calcium (mg/L)	558		536	532	589	594	589	590	581	589	578	585	575	
Magnesium (mg/L)	611	593	588	584	1380	1390	1380	1380	1370	1390	1360	1370	1350	1370
Potassium (mg/L)	83.4	83	76.3	75.8	161	162	161	161	159	161	159	161	158	3 160
Sodium (mg/L)	6830	6800	6690	6770	11400	11300	11500	11200	11400	11400	11300	11200	11300	11100
Chloride (mg/L)	11,300	11300	11400	11300	18900	17700	17200	17400	18100	18100	17000	18400	17700	18400
Fluoride (mg/L)	0	0.18	0.18	0.18	1.9	1.9	1.9	1.9	1.9	1.9	1.9	1.9	1.9	1.9
Sulphate (mg/L)	2,220	2150	2130	2110	6270	6330	6240	6300	6210	6270	6180	6210	6090	6240
Iron (mg/L)	0.067	0.079	0.042	0.044	1.727	1.756	1.79	1.811	1.853	1.849	1.859	1.812	1.875	1.9
Iron (soluble)	0.064	0.076	0.042	0.041	1.688	1.719	1.734	1.73	1.816	1.777	1.778	1.789	1.851	1.862
Manganese (mg/L)	0.695	0.701	0.711	0.707	0.026	0.027	0.028	0.029	0.03	0.031	0.032	0.032	0.034	0.034
Manganese - soluble (mg/L)	0.686	0.674	0.709	0.674	0.026	0.028	0.028	0.029	0.03	0.031	0.032	0.033	0.033	0.034
Phosphorus (mg/L)					0.059	0.062	0.059	0.064	0.062	0.067	0.058	0.062	0.055	0.068
Phosphorus - Filterable reactive as P					0.05			0.045						
Nitrogen - Total					0.22									
TKN as N (mg/L)					0.18									
Ammonia as N (mg/L)					0.224									
Nitrate + Nitrite as N (mg/L)	< 0.005	<0.005	<0.005	<0.005	<0.005			< 0.005						-
DOC (mg/L)	2		1.9	1.9										

 Table 4:
 Groundwater quality results from the Warina Sands and Monoman Formation

Table 5: Groundwater MFI and PSD results from the Warina Sands and Monoman Formation

Identifier	Test Date	Test	MFI (s/L ²)	Turbidity	PSD ₁₀	PSD ₅₀	PSD ₉₀
		No.		(NTU)	(um)	(um)	(um)
Mon 1	16/06/08	Test 1	2.3 ^a	12.3	1.29	8.57	175.28
Mon 2	16/06/08	Test 1	1.4 ^a	10.2	1.15	112.53	181.25
Mon 3	16/06/08	Test 1	N/A	15.2	0.79	4.5	11.07
Mon 4	16/06/08	Test 1	N/A	15	9.18	280.34	433.63
Mon 5	13/06/2008	Test 1	1.2 ^a	15.2	3.09	235.45	441.22
Mon 6	13/06/2008	Test 1	2.1 ^a	10.0	3.84	329.58	536.03
War 1	12/06/2008	Test 1	1.8 ^a	0.78	189.35	290.45	501.5
War 2	12/06/2008	Test 1	N/A	1.1	163.20	284.64	565.45
War 3	12/06/2008	Test 1	3.4	1.43	123.70	395.1	674.58
	12/06/2008	Test 2	3.3 ^b	1.25			

Mon refers to Monoman Formation groundwater samples

War refers to Warina Sands groundwater samples

4.4 DISCUSSION

The MFI and PSD results clearly indicate there is a small amount of suspended material present in groundwater pumped from the Monoman Formation production well. The level of suspended solids is close to or below an acceptable limit of 10 mg/L for aquifer storage and recovery (ASR) related activity (Pavelic et al, 2007).

MFI values of $66.1-208.9~\text{s/L}^2$ were observed in wells completed in the Monoman Formation at Gum Flat in 2005. These values far exceeded the $5~\text{s/L}^2$ considered acceptable for injection into fine textured sand dunes (Pavelic et al, 2007). The current results of $1.2-2.3~\text{s/L}^2$ are more conducive for injection into the Warina Sands.

The PSD of the Monoman Formation groundwater is generally in the range 100-800 microns at longer pumping times. Strata samples collected from the Warina Sands resulted in sieve analysis range of 0.08 (800 microns) -3 mm. Some caution should be applied to this interpretation as the strata samples were collected post shale shaker and may be low in the fine component.

Regardless of filtration techniques very fine material (<50 micron) will enter the aquifer through the screen, which may lead to physical clogging, and this will need to be removed by backflushing.

Other potential clogging mechanisms include physical clogging from iron precipitation if the injectant is exposed to air (although this can be removed by filtration), and biological clogging by iron bacteria have not been considered as part of this study. These forms of clogging were considered as part of the clogging assessment conducted in 2007, which forms part of the Phase II Feasibility Study undertaken by DWLBC (Magarey and Osei-Bonsu, 2008).

5. INJECTION TESTING – MONOMAN FORMATION TO WARINA SANDS

The following sections outline the objectives, methodology and results of the injection test conducted on observation well 7030-809 using Monoman Formation groundwater. Groundwater Technical Services (DWLBC) conducted all on site works.

A single constant rate injection test was conducted on observation well 7030-809 at an injection rate of 6 L/s for a duration of ten days. Testing commenced on 20 June 2008 (concluded 30 June 2008) using groundwater pumped from Monoman Formation production well 7030-710 located at a distance of 1.4 km. For the first seven days the injection rate was held constant at 6 L/s, before increasing to 12 L/s for the final three days. This testing was conducted to determine the hydraulic response of the well and aquifer to the physical and chemical properties of the operational water (which represents a simulation of a Phase III injection trial). Results from the injection test are plotted as injection head vs. time in minutes. Data for the injection test and associated recovery is provided in Appendix 5. Injection head is signed negative.

5.1 OBJECTIVES

The objectives of the injection testing were to:

1. Gain a preliminary understanding of well hydraulic behaviour of observation well 7030-809 under injection using Monoman Formation groundwater.

5.2 PREPARATION FOR INJECTION TESTING

5.2.1 FILTRATION

Prior to the test, an inline filter was purchased to assist in the removal of remnant suspended solids pumped from the Monoman Formation. The filter included interchangeable cartridges with apertures of 50, 100 and 200 microns. The filter was installed at the southern (pumping) end of the line, and was programmed to backflush every eight hours or to flush automatically if excessive pressure built up by blocking with particulate matter. Air was bled from the injection line prior to injection.

5.2.2 DATA RECORDING

Potentiometric pressure in the observation well was recorded using an automated downhole logging device installed at a depth of 6.4 m. A separate pressure transducer was installed at the top of the headworks thus providing independent validation for the downhole logging device. These devices recorded baseline potentiometric pressure prior to, during, and post injection. The downhole logger recorded at one minute intervals, and the surface transducer was read every one minute for the first ten minutes, every two minutes for the next 20 minutes, and between 5 and 30 minutes for the remainder of the test.

5.3 INJECTION TEST

The long–term injection test was conducted at an injection rate of 6 L/s for the first seven days, then increased to 12 L/s for the final three days – total duration 14,402 minutes. Injection head data is plotted in Figure 20. The following general comments can be made:

- 1. The initial injection head spiked during the first ten minutes before falling below the preinjection potentiometric level and stabilising at ~1,000 minutes. These anomalies are
 attributed to density and viscosity variations brought about by the change in the
 temperature of the water column resulting from the temperature difference between the
 injectant and the native groundwater. The Monoman Formation groundwater (~21°C) is
 14°C cooler than that of the Warina Sands (35°C).
- 2. The temperature of the injectant was not recorded during the testing, however temperature recorded during chemistry sampling was 20.6 21.35°C. These temperatures are considered equivalent with those encountered during the testing.
- 3. At 1,400 minutes the injection head reduced, coinciding with the blocking of the 50 micron filter cartridge, which was then replaced with a 100 micron cartridge. Inspection of the cartridge revealed the fine particles had been wedged in the openings, as the automatic backflushing device did not produce sufficient pressure to remove the particulates.
- 4. The injection head continued to remain below the pre–injection potentiometric levels until ~4,000 minutes. It appears that temperature of the injectant had a greater influence on injection head during the first 3,500 minutes than the injection process itself.
- 5. From 4,000 to 10,096 minutes the injection head fluctuated around 0 m.
- 6. At 10,096 minutes the injection rate was increased (incrementally) from 6 L/s to 12 L/s. For each 1 L/s increase, the injection head increased by ~-1.8 m, increasing rapidly to ~-10.5 m. This is 5 m less than the 15.5 m of injection head that developed during the Warina Sands to Warina Sands Injection Test at the same injection rate. The reason for the discrepancy is due to temperature effects caused by the injection of cooler Monoman Formation groundwater.
- 7. At 10,440 minutes the injection head reduced, coinciding with the blocking of the 100 micron filter cartridge, and a reduced injection rate. The 100 micron cartridge was then replaced with a 200 micron cartridge.
- 8. During the final 4,000 minutes of the test the injection head continued to develop, increasing to -11.44 m at 14,402 minutes. The injection head increased by -1.03 m during this period and maintained a constant rate of increase over the final 3,000 minutes of ~-0.21 m/d.
- Steady state was not reached.
- 10. Recovery in the well was not recorded at test completion.

5.4 WELL AND AQUIFER HYDRAULICS

The long-term constant-rate injection test conducted on the observation well 7030-809 indicates the hydraulic behaviour of the well under injection stress. The following comment can be made in addition to those from the Warina Sands to Warina Sands Injection Test:

1. Once the injection rate is increased to 12 L/s there is a slow development of injection head. When the data is plotted on log-linear commencing at time zero there is evidence of increasing rate, however, this cannot be attributed to well clogging and may simply be an aquifer response. The test did not continue for a sufficiently long duration at the higher rate for any clear departure from the simple leaky aquifer system response to become evident. The small head rise could also be analogous to the delayed yield response, which can occur when coarse and fine sands are interbedded or when water stored in the aquitards begins to be released into the aquifer in a pumped—well situation. In the case of injection, the response could be to increasing resistance to flow into the aquitards located above, below (and within) the target aquifer. There is also the possibility that the increase in head is another temperature driven response, as the aquifer in the vicinity of the injection well is filling with cooler water.

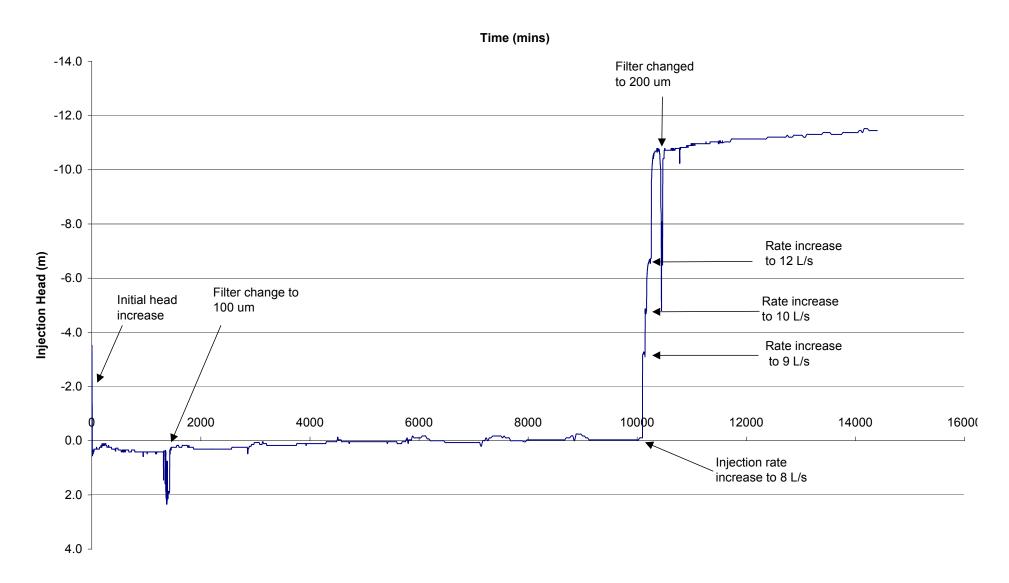


Figure 20. Injection head during Monoman Sands to Warina Sands Injection Test

6. CONCLUSIONS AND RECOMMENDATIONS

6.1 CONCLUSIONS

The results from the various stages of airlift–recovery testing, injection testing and groundwater sampling have resulted in a greater understanding of the potential for deep aquifer disposal of Monoman Formation groundwater into the Warina Sands, within the limitations placed on the project by the diameter of the observation well and the testing methods applied. The results indicate that deep aquifer disposal of saline groundwater in the Chowilla region is technically feasible. Conclusions that can be drawn from the current investigations include:

- 1. The Warina Sands has the potential to receive Monoman Formation groundwater at favourable rates.
- 2. The injection head that will develop in a large diameter 200 mm ID injection well will be considerably less than was developed in the 100 mm ID observation well for a given injection rate.
- 3. In order to maintain any particular injection rate, a steady state situation must ideally be reached. Assuming a leaky aquifer system, the testing conducted did not extend for a sufficiently long duration for steady state conditions to develop in the Monoman Formation to Warina Sands injection test. If the aquifer system is confined, then there will be a small (and reducing) additional increment of additional injection head developed with each log cycle of time according to the Theis curve solution.
- 4. The physical and chemical characteristics of the Monoman Formation groundwater are suitable for injection, provided filtration is used. A 50 micron filter will be consistent with the particle size distribution of the Monoman Formation groundwater.

6.2 RECOMMENDATIONS

Given the limitations resulting from the casing diameter of the existing well, it is recommended that a Phase III injection trial utilising a large diameter injection well be undertaken. The following recommendations highlight the major issues that should be considered as part of a Stage III injection trial:

- 1. Drill and construct a Warina Sands injection (production) well at the study site and adequately develop it.
 - a. The specifications for this well must be carefully considered prior to construction but should include a minimum casing diameter of 200 mm ID, which will have a significant effect on reducing pipe friction losses.
 - b. Careful selection of the drilling method and construction materials may assist with reducing the potential for clogging (Segalen et al., 2005). Remediation methods need to be determined prior to drilling and may include backflush pumping, jetting and surging with a drilling rig in the event of severe clogging. A pumping chamber will need to be incorporated into the design to a depth of ~100 m to accommodate a high capacity pump to be used during backflushing.

- c. The production well should be drilled to the casing point, set the casing and grout it, and then drill and core the production zone with reverse circulation drilling or cable tool drilling to allow accurate strata sample collection and particle size determination of the Warina Sands. Ideally the production zone should be drilled without the use of drilling fluids, the practicality of this would need to be further considered in view of the artesian nature of the aquifer, which would flow in excess of 10 L/s.
- d. The disposal of groundwater will need to be considered during the drilling, development and pumping tests. It is possible that the excess from the holding dam could be redirected to Monoman Formation disposal well(s) or perhaps the Warina Sands observation well if it were filtered, although the rate required for disposal may be a problem.
- 2. Conduct a pumping test on the Warina Sands injection well, using observation well 7030-809 as an observation well, to quantify well hydraulics and aquifer and aquitard hydraulic parameters.
 - a. The positioning of the injection well in relation to the existing observation well must be carefully considered to ensure the maximum amount of useful data can be collected. From the hydraulic perspective the observation well should be located at a distance of 1.5 times the aquifer thickness in order to overcome complications resulting from partial penetration of the aquifer (resulting in a separation of 75 m based on an aquifer thickness of 50 m).
 - b. Consideration should also be given to the position of the injection well with regards to monitoring of physio-chemical parameters as a result of breakthrough of injectant in the Warina Sands. This will give an indication of any chemical changes that may be occurring as a result of mixing Monoman Formation and Warina Sands groundwater.
- 3. Drill and construct multiple feeder production wells completed in the Monoman Formation.
 - a. The feeder production wells will be used to pump Monoman Formation groundwater into the Warina Sands injection well. The feeder wells will lower the water table around Werta Wert wetland with the aim of returning positive ecological outcomes and reduce salt accumulation in the soils.
 - b. The well construction method and development of these production wells will play an important role in the determining the concentration of suspended solids in the source injectant. It is recommended that production wells include wirewound screens (to minimise the entrance velocity) and gravel packs, and be developed at the rate at which they will be pumped for an injection trial.
 - c. The amount of suspended material produced from production wells will be critical for the overall management of a Phase III injection trial, and will reduce the amount of remediation work required during an operational phase. In addition to the production wells, observation wells should be drilled adjacent to the Monoman Formation production wells to determine groundwater lowering.
- 4. Obtain filtration equipment and implement infrastructure for direct injection of Monoman Formation groundwater into the Warina Sands.
 - a. This is viewed as a more favourable option than relying solely on the potential to rectify clogging once it has occurred. Further discussions with Groundwater Technical Services and AMIAD Filtration Systems should occur prior to design and purchase.

- b. A series of in line filters should be considered with a 50 micron filter providing the final filtration. Problems encountered during the Monoman Sands to Warina Sands Injection Test (blocking, excessive flushing and inadequate cleaning of the 50 micron filter cartridge) can be overcome by ensuring sufficient backpressure is maintained (Holliday (AMIAD) pers comm., 2008).
- c. Consideration should also be given to the potential for clogging with iron bacteria, and precipitation of iron, and how these may be controlled.
- d. Backflushing rules must be developed prior to any injection. One simple measure is the injection head development at both the injection and observation well. This should be consistent with the observed aquifer hydraulics and should not change with time if no clogging is occurring.
- 5. Sample Monoman Formation production wells for a range of physio–chemical parameters including suspended solids, turbidity, membrane filtration index, particle size distribution, major ions and nutrients.
- 6. Implement seismic monitoring stations with adequate monitoring prior to commencing a Phase III injection trial (refer to Magarey and Osei-Bonsu 2008).
- 7. Undertake trial injection testing for 6 12 months duration.
 - a. Injection testing should commence at lower rates increasing with time, provided backflushing proves successful.
 - b. The maximum (safe) injection head that can be developed needs to be considered further. A nominal value of 100 m has been discussed in this report. The safe injection head should be less than the fracture pressure, which is related to the depth and strength of overburden materials. A conservative estimate of the fracture pressure can be made by assuming the overburden has zero strength and that gravity is the only force keeping it in place. Assuming a density of 2 t/m³ for the dry material, and allowing 1 t/m³ for the buoyancy effect of the artesian conditions, the resultant downward force is equivalent to 1 t/m depth. This is equivalent to column of water equal in height to the depth to the aquifer, and thus an injection head of up to 350 m would be theoretically considered to be safe. An even more conservative value of safe injection head is derived by taking 85% of the fracture pressure at aquifer level, resulting in 250 m.
- 8. The Warina Sands is a regional confined aquifer and deep aquifer disposal may have application elsewhere in the Riverland for the disposal of saline groundwater or brines generated from desalination.

GLOSSARY

Ambient — The background level of an environmental parameter (e.g. a measure of water quality such as salinity)

Ambient water monitoring — All forms of monitoring conducted beyond the immediate influence of a discharge pipe or injection well, and may include sampling of sediments and living resources

Ambient water quality — The overall quality of water when all the effects that may impact upon the water quality are taken into consideration

Aquiclude — In hydrologic terms, a formation that contains water but cannot transmit it rapidly enough to furnish a significant supply to a well or spring

Aquifer — An underground layer of rock or sediment that holds water and allows water to percolate through

Aquifer, confined — Aquifer in which the upper surface is impervious (see 'confining layer') and the water is held at greater than atmospheric pressure; water in a penetrating well will rise above the surface of the aquifer

Aquifer test — A hydrological test performed on a well, aimed to increase the understanding of the aquifer properties, including any interference between wells, and to more accurately estimate the sustainable use of the water resources available for development from the well

Aquifer, unconfined — Aquifer in which the upper surface has free connection to the ground surface and the water surface is at atmospheric pressure

Aquitard — A layer in the geological profile that separates two aquifers and restricts the flow between them

ASR — Aquifer Storage and Recovery; involves the process of recharging water into an aquifer for the purpose of storage and subsequent withdrawal; also known as aquifer storage and retrieval

Artesian — An aquifer in which the water surface is bounded by an impervious rock formation; the water surface is at greater than atmospheric pressure, and hence rises in any well which penetrates the overlying confining aguifer

Artificial recharge — The process of artificially diverting water from the surface to an aquifer; artificial recharge can reduce evaporation losses and increase aquifer yield; see also 'natural recharge', 'aquifer'

Baseflow — The water in a stream that results from groundwater discharge to the stream; often maintains flows during seasonal dry periods and has important ecological functions

Basin — The area drained by a major river and its tributaries

Bgs — below ground surface

Biodiversity — (1) The number and variety of organisms found within a specified geographic region. (2) The variability among living organisms on the earth, including the variability within and between species and within and between ecosystems

Bore — See 'well'

Catchment — That area of land determined by topographic features within which rainfall will contribute to run-off at a particular point

Cone of depression — An inverted cone-shaped space within an aquifer caused by a rate of groundwater extraction that exceeds the rate of recharge; continuing extraction of water can extend the area and may affect the viability of adjacent wells, due to declining water levels or water quality

Confining layer — A rock unit impervious to water, which forms the upper bound of a confined aquifer; a body of impermeable material adjacent to an aquifer; see also 'aquifer, confined'

Report DWLBC 2009/01

129

Contaminant — A material added by humans or natural activities that may, in sufficient concentrations, render the environment unacceptable for biota; the presence of these materials is not necessarily harmful

CSIRO — Commonwealth Scientific and Industrial Research Organisation

DEH — Department for Environment and Heritage (Government of South Australia)

Diversity — The distribution and abundance of different kinds of plant and animal species and communities in a specified area

DO — Dissolved Oxygen

DOC — Dissolved Organic Carbon

Domestic purpose — The taking of water for ordinary household purposes; includes the watering of land in conjunction with a dwelling not exceeding 0.4 hectares

Dryland salinity — The process whereby salts stored below the surface of the ground are brought close to the surface by the rising watertable. The accumulation of salt degrades the upper soil profile, with impacts on agriculture, infrastructure and the environment.

DWLBC — Department of Water, Land and Biodiversity Conservation (Government of South Australia)

EC — Electrical conductivity; 1 EC unit = 1 micro-Siemen per centimetre (μ S/cm) measured at 25°C; commonly used as a measure of water salinity as it is quicker and easier than measurement by TDS

Ecology — The study of the relationships between living organisms and their environment

Ecosystem — Any system in which there is an interdependence upon, and interaction between, living organisms and their immediate physical, chemical and biological environment

Ephemeral streams or wetlands — Those streams or wetlands that usually contain water only on an occasional basis after rainfall events. Many arid zone streams and wetlands are ephemeral.

Evapotranspiration — The total loss of water as a result of transpiration from plants and evaporation from land, and surface water bodies

EWS — Engineering and Water Supply Department (Government of South Australia); now 'SA Water'

Floodplain — Of a watercourse means: (1) floodplain (if any) of the watercourse identified in a catchment water management plan or a local water management plan; adopted under the Act; or (2) where (1) does not apply — the floodplain (if any) of the watercourse identified in a development plan under the *Development (SA) Act 1993*; or (3) where neither (1) nor (2) applies — the land adjoining the watercourse that is periodically subject to flooding from the watercourse

Fully-penetrating well — In theory this is a wellhole that is screened throughout the full thickness of the target aquifer; in practice, any screen that is open to at least the mid 80% of a confined aquifer is regarded as fully-penetrating

Geological features — Include geological monuments, landscape amenity and the substrate of land systems and ecosystems

Groundwater — Water occurring naturally below ground level or water pumped, diverted and released into a well for storage underground; see also 'underground water'

Hydraulic conductivity (K) — A measure of the ease of flow through aquifer material: high K indicates low resistance, or high flow conditions; measured in metres per day

Hydrogeology — The study of groundwater, which includes its occurrence, recharge and discharge processes, and the properties of aquifers; see also 'hydrology'

Hydrology — The study of the characteristics, occurrence, movement and utilisation of water on and below the Earth's surface and within its atmosphere; see also 'hydrogeology'

Infrastructure — Artificial lakes; dams or reservoirs; embankments, walls, channels or other works; buildings or structures; or pipes, machinery or other equipment

Injection well — An artificial recharge well through which water is pumped or gravity-fed into the ground

Report DWLBC 2009/01 130

Lake — A natural lake, pond, lagoon, wetland or spring (whether modified or not) that includes part of a lake and a body of water declared by regulation to be a lake. A reference to a lake is a reference to either the bed, banks and shores of the lake or the water for the time being held by the bed, banks and shores of the lake, or both, depending on the context.

Land — Whether under water or not, and includes an interest in land and any building or structure fixed to the land

m AHD — Defines elevation in metres (m) according to the Australian Height Datum (AHD)

Monitoring — (1) The repeated measurement of parameters to assess the current status and changes over time of the parameters measured (2) Periodic or continuous surveillance or testing to determine the level of compliance with statutory requirements and/or pollutant levels in various media or in humans, animals, and other living things

Native species — Any animal and plant species originally in Australia; see also 'indigenous species'

Observation well — A narrow well or piezometer whose sole function is to permit water level measurements

Obswell — Observation Well Network

Penetrating well — See 'fully-penetrating well'

Perennial streams — Permanently inundated surface stream courses. Surface water flows throughout the year except in years of infrequent drought.

pH - acidity

Piezometer — A narrow tube, pipe or well; used for measuring moisture in soil, water levels in an aquifer, or pressure head in a tank, pipeline, etc

Potentiometric head — The potentiometric head or surface is the level to which water rises in a well due to water pressure in the aquifer, measured in metres (m); also known as piezometric surface

Production well — The pumped well in an aquifer test, as opposed to observation wells; a wide-hole well, fully developed and screened for water supply, drilled on the basis of previous exploration wells

Ramsar Convention — This is an international treaty on wetlands titled *The Convention on Wetlands of International Importance Especially as Waterfowl Habitat*. It is administered by the International Union for Conservation of Nature and Natural Resources. It was signed in the town of Ramsar, Iran in 1971, hence its common name. The convention includes a list of wetlands of international importance and protocols regarding the management of these wetlands. Australia became a signatory in 1974.

SA Geodata — A collection of linked databases storing geological and hydrogeological data, which the public can access through the offices of PIRSA. Custodianship of data related to minerals and petroleum, and groundwater, is vested in PIRSA and DWLBC, respectively. DWLBC should be contacted for database extracts related to groundwater

Specific storage (S_s) — Specific storativity; the amount of stored water realised from a unit volume of aquifer per unit decline in head; it is dimensionless

Specific yield (S_y) — The volume ratio of water that drains by gravity, to that of total volume of the porous medium. It is dimensionless

(S) — Storativity; storage coefficient; the volume of groundwater released or taken into storage per unit plan area of aquifer per unit change of head; it is dimensionless

Surface water — (a) water flowing over land (except in a watercourse), (i) after having fallen as rain or hail or having precipitated in any another manner, (ii) or after rising to the surface naturally from underground; (b) water of the kind referred to in paragraph (a) that has been collected in a dam or reservoir

T — Transmissivity; a parameter indicating the ease of groundwater flow through a metre width of aquifer section (taken perpendicular to the direction of flow), measured in m²/d

TDS — Total dissolved solids, measured in milligrams per litre (mg/L); a measure of water salinity

Report DWLBC 2009/01 131

Tertiary aquifer — A term used to describe a water-bearing rock formation deposited in the Tertiary geological period (1–70 million years ago)

TKN — Total Kjeldahl Nitrogen; the sum of aqueous ammonia and organic nitrogen; used as a measure of probable sewage pollution

TN — Total nitrogen

TOC — Top of casing

Transmissivity (T) — A parameter indicating the ease of groundwater flow through a metre width of aquifer section

TSS — Dissolved suspended solids

Turbidity — The cloudiness or haziness of water (or other fluid) caused by individual particles that are too small to be seen without magnification, thus being much like smoke in air; measured in Nephelometric Turbidity Units (NTU)

Underground water (groundwater) — Water occurring naturally below ground level or water pumped, diverted or released into a well for storage underground

Watercourse — A river, creek or other natural watercourse (whether modified or not) and includes: a dam or reservoir that collects water flowing in a watercourse; a lake through which water flows; a channel (but not a channel declared by regulation to be excluded from the this definition) into which the water of a watercourse has been diverted; and part of a watercourse

Water quality data — Chemical, biological, and physical measurements or observations of the characteristics of surface and groundwaters, atmospheric deposition, potable water, treated effluents, and wastewater, and of the immediate environment in which the water exists

Well — (1) An opening in the ground excavated for the purpose of obtaining access to underground water. (2) An opening in the ground excavated for some other purpose but that gives access to underground water. (3) A natural opening in the ground that gives access to underground water

Wetlands — Defined by the Act as a swamp or marsh and includes any land that is seasonally inundated with water. This definition encompasses a number of concepts that are more specifically described in the definition used in the Ramsar Convention on Wetlands of International Importance. This describes wetlands as areas of permanent or periodic to intermittent inundation, whether natural or artificial, permanent or temporary, with water that is static or flowing, fresh, brackish or salt, including areas of marine water, the depth of which at low tides does not exceed six metres.

Report DWLBC 2009/01 132

REFERENCES

Dillon, P., Pavelic, P., Massmann, G., Barry, K. and Corell, R. (2001). Enhancement of the membrane filtration index (MFI) method for determining the clogging potential of turbid urban stormwater and reclaimed water used for aquifer storage and recovery. Desalination 140(2):153-165.

Magarey, P.D., and Osei-Bonsu, K. (2008). *Regional Disposal Strategy, Renmark Group Deep Aquifer Injection: Phase II Feasibility Study*. Department of Water Land and Biodiversity Conservation. DWLBC Report Book 2008/02.

Pavelic, P., Vanderzalm, J., Dillon, P., Herczeg, A., Barry, K., Levett, K., Mimoso, J. and Magarey, P (2007). Assessment of the Potential for Well Clogging Associated with Salt Water Interception and Deep Injection at Chowilla, SA. CSIRO Land and Water.

Rammers, N., Hill, T. and Yan, W. (2005). Regional Disposal Strategy – Renmark Group Deep Injection: Phase 1 Desktop Study. South Australia. Department of Water, Land and Biodiversity Conservation. DWLBC Report 2005/29.

Segalen, A..S., Pavelic, P and Dillon, P. J. (2005). *Review of Drilling, completion and remediation methods for ASR wells in unconsolidated aguiers*. CSIRO Land and Water Technical Report 04/05.

Smith, P.C., (1982). *Determination of Transmissivity from Airlift and Recovery*. Department of Mines and Energy, South Australia. Report Book 1982/33.

DWLBC REPORT

Regional Disposal Strategy

- Renmark Group Deep

Aquifer Injection Phase IIb

Preliminary Pumping and

Injection Trials

2009/01 - part 2

APPENDICES

APPENDIX 1: AIRLIFT-RECOVERY TEST DATA

Test	Date	Depth of air injection line below TOC (m)	Airlift pressure (kPa)	Pumping rate (L/s)	Test duration (mins)	Maximum drawdown (m)	Time until recovery following cessation of airlifting (s)
1	27/3/2008	21	~689	9.5	240	13.0	~ 90
2	28/3/2008	51	~689	11.8	240	24.3	120
3	29/3/2008	81	~689	13.0	480	27.7	240

Test 1 Residual drawdown logger data following cessation of pumping Head prior to airlifting: 31.912 m above logger

Time (s)	Head above logger (m)	Resid - S(t) (m)
0	18.915	12.997
10	49.490	-17.578
20	38.253	-6.341
30	35.358	-3.446
40	34.117	-2.205
50	33.359	-1.447
60	33.049	-1.137
70	32.877	-0.965
80	32.773	-0.861
90	32.773	-0.861
100	32.704	-0.792
110	32.704	-0.792
120	32.704	-0.792
130	32.601	-0.689
140	32.704	-0.792
150	32.704	-0.792
160	32.704	-0.792
170	32.704	-0.792
180	32.773	-0.861
190	32.773	-0.861
200	32.773	-0.861
210	32.704	-0.792
220	32.704	-0.792
230	32.704	-0.792
240	32.773	-0.861
250	32.704	-0.792
260	32.704	-0.792
270	32.704	-0.792

Time (s)	Head above logger (m)	Resid – S(t) (m)
280	32.704	-0.792
290	32.704	-0.792
300	32.704	-0.792 -0.792
310	32.704	-0.792
320		
	32.704	-0.792
330	32.704	-0.792
340 350	32.704 32.704	-0.792 -0.792
360	32.704	-0.792
		-0.792
370 380	32.704 32.704	-0.792 -0.792
390	32.704	-0.792
400	32.704	-0.792
410	32.704	-0.792
420	32.704	-0.792
430	32.704	-0.792
440	32.704	-0.792
440 450	32.704	-0.792
460	32.704	-0.792
470	32.704	-0.792
480	32.704	-0.792
490	32.704	-0.792
500	32.704	-0.792
510	32.704	-0.792
520	32.704	-0.792
530	32.704	-0.792
540	32.704	-0.792
550	32.704	-0.792
560	32.704	-0.792
570	32.704	-0.792
580	32.704	-0.792
590	32.704	-0.792
600	32.704	-0.792
610	32.704	-0.792
670	32.704	-0.792
730	32.704	-0.792
790	32.704	-0.792
850	32.704	-0.792
910	32.704	-0.792
970	32.704	-0.792
1030	32.704	-0.792
1090	32.704	-0.792
1150	32.704	-0.792
1210	32.704	-0.792

Time (s)	Head above logger (m)	Resid - S(t) (m)
1270	32.635	-0.723
1330	32.704	-0.792
1390	32.635	-0.723
1450	32.635	-0.723
1510	32.635	-0.723
1570	32.635	-0.723
1630	32.635	-0.723
1690	32.635	-0.723
1750	32.635	-0.723
1810	32.635	-0.723
1870	32.635	-0.723
1930	32.635	-0.723
1990	32.635	-0.723
2050	32.635	-0.723
2110	32.635	-0.723
2170	32.635	-0.723
2230	32.635	-0.723
2290	32.635	-0.723
2350	32.635	-0.723
2410	32.635	-0.723
2470	32.635	-0.723
2530	32.635	-0.723
2590	32.635	-0.723
2650	32.566	-0.654
2710	32.635	-0.723
2770	32.566	-0.654
2830	32.566	-0.654
2890	32.566	-0.654
2950	32.566	-0.654
3010	32.566	-0.654
3070	32.566	-0.654
3130	32.566	-0.654
3190	32.566	-0.654
3250	32.566	-0.654
3310	32.566	-0.654
3370	32.566	-0.654
3430	32.566	-0.654
3490	32.566	-0.654
3550	32.566	-0.654
3610	32.566	-0.654
3670	32.566	-0.654
3730	32.566	-0.654

Test 2 Residual drawdown logger data following cessation of pumping Head prior to airlifting: 62.452 m above logger

Time (s)	Head above probe (m)	Resid – S(t) (m)
0	38.115	24.337
10	50.457	11.995
20	69.278	-6.826
30	58.005	4.447
40	60.178	2.274
50	63.831	-1.379
60	63.417	-0.965
70	62.452	0.000
80	62.521	-0.069
90	63.349	-0.897
100	63.865	-1.413
110	63.211	-0.759
120	63.038	-0.586
130	62.866	-0.414
140	62.866	-0.414
150	62.969	-0.517
160	63.142	-0.690
170	62.969	-0.517
180	63.142	-0.690
190	63.004	-0.552
200	63.004	-0.552
210	63.004	-0.552
220	63.245	-0.793
230	62.969	-0.517
240	63.107	-0.655
250	62.935	-0.483
260	63.245	-0.793
270	63.004	-0.552
280	63.004	-0.552
290	63.004	-0.552
300	63.004	-0.552
310	62.866	-0.414
320	63.142	-0.690
330	63.004	-0.552
340	63.142	-0.690
350	62.866	-0.414
360	63.073	-0.621
370	63.004	-0.552
380	63.280	-0.828
390	62.969	-0.517
400	62.969	-0.517
410	63.176	-0.724
<u> </u>		-

Time (s)	Head above probe (m)	Resid – S(t) (m)
420	63.004	-0.552
430	63.004	-0.552
440	63.004	-0.552
450	62.866	-0.414
460	63.073	-0.621
470	63.073	-0.621
480	63.004	-0.552
490	62.935	-0.483
500	63.280	-0.828
510	63.004	-0.552
520	63.004	-0.552
530	63.280	-0.828
540	63.004	-0.552
550	62.901	-0.449
560	63.038	-0.586
570	63.038	-0.586
580	63.176	-0.724
590	62.969	-0.517
650	63.176	-0.724
710	63.004	-0.552
770	63.280	-0.828
830	62.935	-0.483
890	63.004	-0.552
950	63.004	-0.552
1010	63.211	-0.759
1070	62.901	-0.449
1130	63.073	-0.621
1190	62.969	-0.517
1250	63.038	-0.586
1310	63.038	-0.586
1370	63.004	-0.552
1430	63.280	-0.828
1490	63.142	-0.690
1550	62.969	-0.517
1610	62.969	-0.517
1670	63.211	-0.759
1730	63.004	-0.552
1790	62.901	-0.449
1850	62.969	-0.517
1910	62.969	-0.517
1970	63.142	-0.690
2030	62.935	-0.483
2090	62.866	-0.414
2150	62.935	-0.483
2210	63.073	-0.621

Time (s)	Head above probe (m)	Resid – S(t) (m)
2270	62.935	-0.483
2330	62.935	-0.483
2390	62.901	-0.449
2450	63.004	-0.552
2510	62.935	-0.483
2570	62.901	-0.449
2630	62.866	-0.414
2690	62.935	-0.483
2750	62.935	-0.483
2810	63.073	-0.621
2870	62.969	-0.517
2930	62.866	-0.414
2990	57.901	4.551

Test 3 Residual drawdown logger data following cessation of pumping Head prior to airlifting: 93.399 m above logger

- · / \		D 11 0(1) ()0
Time (s)		Resid – S(t) (m)0
0	65.692	27.707
10	67.553	25.846
20	79.757	13.642
30	94.613	-1.214
40	89.444	3.955
50	94.820	-1.421
60	93.614	-0.215
70	92.373	1.026
80	93.889	-0.49
90	92.718	0.681
100	92.890	0.509
110	95.406	-2.007
120	92.132	1.267
130	93.028	0.371
140	93.958	-0.559
150	93.545	-0.146
160	93.441	-0.042
170	92.993	0.406
180	92.993	0.406
190	93.683	-0.284
200	94.268	-0.869
210	93.958	-0.559
220	93.407	-0.008
230	93.407	-0.008
240	93.338	0.061
250	93.579	-0.18
260	93.579	-0.18
270	93.304	0.095
280	93.304	0.095
290	93.614	-0.215
300	93.614	-0.215
310	93.476	-0.077
320	93.545	-0.146
330	93.614	-0.215
340	93.786	-0.387
350	93.545	-0.146
360	93.441	-0.042
370	93.441	-0.042
380	93.579	-0.18
390	93.648	-0.249
400	93.545	-0.146

Time (s)	Head above logger (m)	Resid – S(t) (m)0
410	93.441	-0.042
420	93.441	-0.042
430	93.510	-0.111
440	93.200	0.199
450	93.441	-0.042
460	93.545	-0.146
470	94.510	-1.111
480	93.062	0.337
490	93.510	-0.111
500	93.407	-0.008
510	93.476	-0.077
520	93.407	-0.008
530	93.648	-0.249
540	93.476	-0.077
550	93.476	-0.077
560	93.614	-0.215
570	93.441	-0.042
580	93.441	-0.042
590	93.579	-0.18
600	93.579	-0.18
660	93.476	-0.077
720	93.510	-0.111
780	93.717	-0.318
840	93.372	0.027
900	93.476	-0.077
960	94.165	-0.766
1020	93.372	0.027
1080	93.476	-0.077
1140	93.579	-0.18
1200	93.441	-0.042
1260	93.476	-0.077
1320	93.717	-0.318
1380	93.407	-0.008
1440	93.338	0.061
1500	93.476	-0.077
1560	93.476	-0.077
1620	93.476	-0.077
1680	93.372	0.027
1740	93.407	-0.008
1800	93.407	-0.008
1860	93.476	-0.077
1920	93.476	-0.077
1980	93.407	-0.008
2040	99.681	-6.282
2100	93.407	-0.008

2160 93.510 -0.111 2220 93.097 0.302 2280 94.131 -0.732 2340 93.441 -0.042 2400 93.372 0.027 2460 93.476 -0.077 2520 93.441 -0.042 2580 93.407 -0.008 2640 93.648 -0.249 2700 93.476 -0.077 2760 93.407 -0.008	m)0
2280 94.131 -0.732 2340 93.441 -0.042 2400 93.372 0.027 2460 93.476 -0.077 2520 93.441 -0.042 2580 93.407 -0.008 2640 93.648 -0.249 2700 93.476 -0.077	
2340 93.441 -0.042 2400 93.372 0.027 2460 93.476 -0.077 2520 93.441 -0.042 2580 93.407 -0.008 2640 93.648 -0.249 2700 93.476 -0.077	
2400 93.372 0.027 2460 93.476 -0.077 2520 93.441 -0.042 2580 93.407 -0.008 2640 93.648 -0.249 2700 93.476 -0.077	
2460 93.476 -0.077 2520 93.441 -0.042 2580 93.407 -0.008 2640 93.648 -0.249 2700 93.476 -0.077	
2520 93.441 -0.042 2580 93.407 -0.008 2640 93.648 -0.249 2700 93.476 -0.077	
2580 93.407 -0.008 2640 93.648 -0.249 2700 93.476 -0.077	
2640 93.648 -0.249 2700 93.476 -0.077	
2700 93.476 -0.077	
2760 93 407 -0 008	
2,33	
2820 93.304 0.095	
2880 93.476 -0.077	
2940 93.648 -0.249	
3000 93.407 -0.008	
3060 93.407 -0.008	
3120 93.407 -0.008	
3180 93.407 -0.008	
3240 93.407 -0.008	
3300 93.407 -0.008	
3360 93.407 -0.008	
3420 93.407 -0.008	
3480 93.407 -0.008	
3540 93.407 -0.008	
3600 93.407 -0.008	

APPENDIX 2: WARINA SANDS TO WARINA SANDS INJECTION DATA

Test	Date	Injection rate (L/s)	Test duration (mins)	Time until recovery following cessation of injection (mins)
1	31/3/2008	3	500	< 1
2	2/4/2008	6	299	< 1
3	4/4/2008	9	200	< 1
4	5/4/2008	12	158	< 1

Test 1 injection head data

Time (mins)	Head above logger (m)	Injection Head (m)	Comment
	Initial head 20.741		22
1	20.707	0.034	
2	20.707	-0.069	
3	20.81	-9.376	
4	30.117	-3.621	
5	24.362	-2.243	
6	22.984	-2.311	
7	23.052	-2.001	
8	22.742	-1.863	
9	22.604	-1.932	
10	22.673	-1.932	
11	22.673	-2.105	
12	22.846	-2.105	
13	22.846	-1.45	
14	22.191	-1.967	
15	22.708	-1.795	
16	22.536	-1.898	
17	22.639	-1.898	
18	22.639	-1.795	
19	22.536	-1.795	
20	22.536	-1.795	
21	22.536	-1.898	
22	22.639	-1.829	
23	22.57	-1.898	
24	22.639	-1.76	
25	22.501	-1.76	
26	22.501	-1.76	
27	22.501	-1.863	
28	22.604	-1.863	
29	22.604	-1.863	
30	22.604	-1.967	
31	22.708	-2.208	

Time (mins)	Head above logger (m)	Injection Head (m)	Comment
32	22.949	-1.932	
33	22.673	-1.932	
34	22.673	-2.036	
35	22.777	-2.036	
36	22.777	-1.932	
37	22.673	-1.863	
38	23.604	-2.346	
39	23.087	-2.346	
40	22.087	-1.967	
41	22.708	-2.243	
42	22.984	-2.174	
43	22.915	-2.07	
44	22.811	-2.001	
45	22.742	-2.07	
46	22.811	-1.863	
47	22.604	-1.932	
48	22.673	-2.036	
49	22.777	-1.932	
50	22.673	-2.036	
51	22.777	-1.932	
52	22.673	-2.07	
53	22.811	-1.898	
54	22.639	-2.001	
55	23.742	-2.449	
56	23.19	-2.07	
57	22.811	-2.001	
58	22.742	-2.07	
59	22.811	-2.346	
60	23.087	-2.036	
65	22.777	-2.036	
70	22.777	-2.036	
80	22.915	-2.174	
90	23.018	-2.277	
95	22.880	-2.139	
100	22.846	-2.105	
105	22.570	-1.829	
110	22.846	-2.105	
115	23.190	-2.449	
120	22.811	-2.07	
125	22.915	-2.174	
130	22.949	-2.208	
135	23.156	-2.415	
140	22.811	-2.07	
145	23.018	-2.277	
150	22.949	-2.208	

Time (mins)	Head above logger (m)	Injection Head (m)	Comment
155	22.949	-2.208	
160	23.052	-2.311	
165	23.018	-2.277	
170	23.018	-2.277	
175	23.052	-2.311	
180	22.984	-2.243	
185	23.156	-2.415	
190	23.052	-2.311	
195	23.052	-2.311	
200	23.052	-2.311	
205	23.121	-2.38	
210	23.087	-2.346	
215	23.052	-2.311	
220	23.052	-2.311	
225	23.087	-2.346	
230	23.018	-2.277	
235	23.087	-2.346	
240	23.018	-2.277	
245	23.018	-2.277	
250	23.052	-2.311	
255	23.190	-2.449	
260	22.984	-2.243	
265	23.121	-2.38	
270	23.121	-2.38	
275	23.121	-2.38	
280	23.259	-2.518	
285	23.294	-2.553	
290	23.259	-2.518	
295	23.225	-2.484	
300	23.225	-2.484	
305	23.363	-2.622	
310	23.087	-2.346	
315	23.190	-2.449	
320	23.156	-2.415	
325	23.156	-2.415 -2.415	
330	23.156	-2.415 -2.415	
335	23.121	-2.38	
340	23.121	-2.38 2.415	
345	23.156	-2.415	
350	23.121	-2.38	
355	23.604	-2.863	
360	23.294	-2.553	
365	23.225	-2.484	
370	23.225	-2.484	
375	23.294	-2.553	

Time	Hoad above logger (~)	Injection Head (m)	Comment
(mins) 380	Head above logger (m)	-2.725	Comment
385	23.466	-2.725 -2.484	
	23.225		
390	23.190	-2.449	
395	23.328	-2.587	
400	23.156	-2.415	
405	23.225	-2.484	
410	23.259	-2.518	
415	23.294	-2.553	
420	23.328	-2.587	
425	23.432	-2.691	
430	23.294	-2.553	
435	23.328	-2.587	
440	23.569	-2.828	
445	23.466	-2.725	
450	23.604	-2.863	
455	23.294	-2.553	
460	23.225	-2.484	
465	23.328	-2.587	
470	23.294	-2.553	
475	23.259	-2.518	
480	23.328	-2.587	
485	23.259	-2.518	
490	23.294	-2.553	
495	23.156	-2.415	
500	23.432	0.517	Injection Stopped
505	20.362	0.517	
510	20.224	0.517	
515	20.293	0.448	
520	20.224	0.517	

Test 2 injection head data

Time			_
(mins)	Head above logger (m)	Injection Head (m)	Comment
0	Initial head 20.74	1.205	
1	25.40	-4.656	
2	25.91	-5.173	
3	26.33	-5.586	
4	26.26	-5.518	
5	26.05	-5.311	
6	26.22	-5.483	
7	26.22	-5.483	
8	26.29	-5.552	
9	26.50	-5.759	
10	26.36	-5.621	
11	26.46	-5.724	
12	26.46	-5.724	
13	26.46	-5.724	
14	26.71	-5.966	
15	26.43	-5.69	
16	26.57	-5.828	
17	26.57	-5.828	
18	26.57	-5.828	
19	26.33	-5.586	
20	26.40	-5.655	
21	26.40	-5.655	
22	26.50	-5.759	
23	26.50	-5.759	
24	26.50	-5.759	
25	26.33	-5.586	
26	26.33	-5.586	
27	26.64	-5.897	
28	26.46	-5.724	
29	26.53	-5.793	
30	26.43	-5.69	
31	26.60	-5.862	
32	26.46	-5.724	
33	26.46	-5.724	
34	26.46	-5.724	
35	26.40	-5.655	
36	26.40	-5.655	
37	26.40	-5.655	
38	26.40	-5.655	
39	26.77	-6.034	
40	26.50	-5.759	
41	26.50	-5.759	

Time			
(mins)	Head above logger (m)	Injection Head (m)	Comment
42	26.50	-5.759	
43	26.50	-5.759	
44	25.98	-5.242	
45	26.43	-5.69	
46	26.43	-5.69	
47	26.71	-5.966	
48	26.46	-5.724	
49	26.29	-5.552	
50	26.46	-5.724	
51	26.71	-5.966	
52	26.91	-6.172	
53	26.43	-5.69	
54	26.50	-5.759	
55	26.84	-6.103	
56	26.26	-5.518	
57	26.46	-5.724	
58	26.46	-5.724	
59	26.46	-5.724	
60	26.46	5.724	
65	26.258	-6.00	
70	26.53	-5.793	
75	26.46	-5.724	
80	26.43	-5.69	
85	26.50	-5.759	
90	26.57	-5.72	
95	26.53	-5.724	
100	26.64	-5.897	
105	26.57	-5.966	
110	26.33	-6.069	
115	26.64	-5.724	
120	26.53	-5.793	
125	26.36	-5.793	
130	26.43	-5.897	
135	26.43	-5.759	
140	26.57	-5.759	
145	26.12	-5.828	
150	26.53	-5.793	
155	26.40	-5.759	
160	26.46	-5.793	
165	26.81	-5.793	
170	26.57	-5.724	
175	26.57	-5.828	
180	26.57	-6.103	
185	26.57	-5.828	

Time (mins)	Head above logger (m)	Injection Head (m)	Comment
190	26.67	-5.793	Comment
195	26.57	-5.828	
200	26.50	-5.828	
205	26.46	-5.897	
210	26.50	-5.759	
215	26.81	-6.069	
220	26.43	-5.759	
225	26.81	-5.586	
230	26.60	-5.862	
235	26.53	-5.793	
240	26.46	-5.724	
245	26.40	-5.759	
250	26.26	-6.241	
255	26.53	-5.97	
260	26.57	-5.828	
265	26.71	-5.79	
270	26.50	-5.759	
275	26.50	-5.759	
280	26.91	-5.90	
285	26.57	-5.828	
290	26.50	-5.759	
295	26.53	-5.793	
300	26.53	-5.793	Injection stopped
305	20.81	-0.07	
310	20.67	0.068	
315	20.78	-0.036	
320	20.71	0.033	
325	20.78	-0.036	
330	20.71	0.033	
335	20.71	0.033	
340	20.71	0.033	
345	20.71	0.033	
350	20.71	0.033	
355	20.71	0.033	
360	20.71	0.033	
365	20.71	0.033	

Test 3 injection head data

Time (mins)	Head above logger (m)	Injection Head (m)	Comment
(Initial head 20.879	,	
1	29.221	-8.342	
2	30.290	-9.411	
3	30.290	-9.411	
4	30.359	-9.480	
5	30.359	-9.480	
6	30.807	-9.928	
7	30.324	-9.445	
8	31.255	-10.376	
9	30.945	-10.066	
10	30.703	-9.824	
11	30.703	-9.824	
12	30.910	-10.031	
13	30.531	-9.652	
14	30.703	-9.824	
15	30.703	-9.824	
16	30.703	-9.824	
17	30.703	-9.824	
18	30.703	-9.824	
19	30.703	-9.824	
20	30.703	-9.824	
21	30.600	-9.721	
22	30.738	-9.859	
23	30.738	-9.859	
24	30.290	-9.411	
25	30.703	-9.824	
26	30.703	-9.824	
27	30.772	-9.893	
28	30.703	-9.824	
29	30.703	-9.824	
30	30.703	-9.824	
31	30.772	-9.893	
32	30.772	-9.893	
33	30.876	-9.997	
34	30.807	-9.928	
35	30.807	-9.928	
36	30.807	-9.928	
37	30.807	-9.928	
38	31.117	-10.238	
39	30.772	-9.893	
40	30.772	-9.893	
41	30.703	-9.824	
42	30.703	-9.824	

nt

31.013 20.707 20.672	-10.134 0.172	Comment Injection Stopped
20.707	0.172	Injection Stopped
	-	
20.672	0.007	
	0.207	
20.672	0.207	
20.672	0.207	
20.638	0.241	
20.672	0.207	
20.638	0.241	
20.603	0.276	
20.741	0.138	
20.672	0.207	
20.672	0.207	
20.707	0.172	
	20.672 20.638 20.672 20.638 20.603 20.741 20.672 20.672	20.672 0.207 20.638 0.241 20.672 0.207 20.638 0.241 20.603 0.276 20.741 0.138 20.672 0.207 20.672 0.207

Test 4 injection head data

Time	Head above to see a 6-2	Inia atian II and too	0
(mins)	Head above logger (m)	Injection Head (m)	Comment
4	Initial head 20.672	16 100	
1	37.081	-16.409	
2	35.668	-14.996	
3	35.668	-14.996 15.337	
4 5	35.909	-15.237 15.237	
	35.909	-15.237 -15.651	
6 7	36.323 36.22	-15.548	
8	36.288	-15.616	
9	36.288	-15.616	
10	36.22	-15.548	
11	36.22	-15.548	
12	36.22	-15.548 -15.548	
13	36.22	-15.548	
14	36.151	-15.479	
15	36.151	-15.479	
16	36.22	-15.548	
17	36.22	-15.548	
18	36.22	-15.548	
19	36.116	-15.444	
20	36.116	-15.444	
21	36.116	-15.444	
22	36.116	-15.444	
23	36.116	-15.444	
24	36.116	-15.444	
25	36.116	-15.444	
26	36.116	-15.444	
27	36.116	-15.444	
28	36.185	-15.513	
29	36.185	-15.513	
30	36.116	-15.444	
31	36.116	-15.444	
32	36.22	-15.548	
33	36.22	-15.548	
34	36.151	-15.479	
35	36.254	-15.582	
36	36.047	-15.375	
37	36.185	-15.513	
38	36.185	-15.513	
39	36.116	-15.444	
40	36.185	-15.513	
41	36.185	-15.513	

Time			
(mins)	Head above logger (m)	Injection Head (m)	Comment
42	36.116	-15.444	
43	36.22	-15.548	
44	36.116	-15.444	
45	36.116	-15.444	
46	36.116	-15.444	
47	36.116	-15.444	
48	36.116	-15.444	
49	36.116	-15.444	
50	36.116	-15.444	
51	36.116	-15.444	
52	36.116	-15.444	
53	36.185	-15.513	
54	36.116	-15.444	
55	36.22	-15.548	
56	36.22	-15.548	
57	36.22	-15.548	
58	36.151	-15.479	
59	36.151	-15.479	
60	36.151	-15.479	
61	36.151	-15.479	
62	36.151	-15.479	
63	36.151	-15.479	
64	36.288	-15.616	
65	36.288	-15.616	
66	36.288	-15.616	
67	36.288	-15.616	
68	36.288	-15.616	
69	36.288	-15.616	
70	36.288	-15.616	
71	36.288	-15.616	
72	36.22	-15.548	
73	36.22	-15.548	
74	36.22	-15.548	
75	36.22	-15.548	
76	36.151	-15.479	
77	36.288	-15.616	
78	36.22	-15.548	
79	36.22	-15.548	
80	36.151	-15.479	
81	36.254	-15.582	
82	36.185	-15.513	
83	36.185	-15.513	
84	36.116	-15.444	
85	36.116	-15.444	

Time			
(mins)	Head above logger (m)	Injection Head (m)	Comment
86	36.116	-15.444	
87	36.116	-15.444	
88	36.116	-15.444	
89	36.116	-15.444	
90	36.116	-15.444	
91	36.116	-15.444	
92	36.116	-15.444	
93	36.185	-15.513	
94	36.185	-15.513	
95	36.185	-15.513	
96	36.185	-15.513	
97	36.082	-15.41	
98	36.151	-15.479	
99	36.151	-15.479	
100	36.254	-15.582	
101	36.185	-15.513	
102	36.185	-15.513	
103	36.185	-15.513	
104	36.185	-15.513	
105	36.185	-15.513	
106	36.185	-15.513	
107	36.185	-15.513	
108	36.185	-15.513	
109	36.185	-15.513	
110	36.185	-15.513	
111	36.185	-15.513	
112	36.254	-15.582	
113	36.254	-15.582	
114	36.254	-15.582	
115	36.254	-15.582	
116	36.254	-15.582	
117	36.254	-15.582	
118	36.254	-15.582	
119	36.151	-15.479	
120	36.22	-15.548	
121	36.22	-15.548	
122	36.22	-15.548	
123	36.151	-15.479	
124	36.22	-15.548	
125	36.22	-15.548	
126	36.22	-15.548	
127	36.22	-15.548	
128	36.22	-15.548	
129	36.22	-15.548	

Time			
(mins)	Head above logger (m)	Injection Head (m)	Comment
130	36.116	-15.444	
131	36.185	-15.513	
132	36.185	-15.513	
133	36.254	-15.582	
134	36.254	-15.582	
135	36.254	-15.582	
136	36.254	-15.582	
137	36.254	-15.582	
138	36.254	-15.582	
139	36.254	-15.582	
140	36.254	-15.582	
141	36.185	-15.513	
142	36.185	-15.513	
143	36.254	-15.582	
144	36.254	-15.582	
145	36.254	-15.582	
146	36.254	-15.582	
147	36.254	-15.582	
148	36.185	-15.513	
149	36.254	-15.582	
150	36.254	-15.582	
151	36.254	-15.582	
152	36.254	-15.582	
153	36.151	-15.479	
154	36.082	-15.41	Injection Stopped
155	14.883	5.789	
156	20.672	0	
157	20.569	0.103	
158	20.569	0.103	
159	20.5	0.172	
160	20.5	0.172	
161	20.5	0.172	
162	20.5	0.172	
163	20.5	0.172	
164	20.5	0.172	
165	20.5	0.172	
166	20.5	0.172	
167	20.5	0.172	
168	20.5	0.172	
169	20.5	0.172	
170	20.5	0.172	
171	20.5	0.172	
172	20.5	0.172	
173	20.5	0.172	

Time (mins)	Head above logger (m)	Injection Head (m)	Comment
174	20.5	0.172	
175	20.5	0.172	
176	20.5	0.172	
177	20.5	0.172	
178	20.5	0.172	
179	20.5	0.172	
180	20.431	0.241	
181	20.431	0.241	
182	20.603	0.069	
183	20.431	0.241	
184	20.224	0.448	
185	20.293	0.379	
186	20.293	0.379	
187	20.466	0.206	

APPENDIX 3: GROUNDWATER CHEMISTRY RESULTS (AWQC)

n Australian W 917 F 10: 84636999 Page: 1750 n

Date: 16/05/2006 T1:49:51 AM

FACSIMILE TRANSMISSION

84636999

Company:

m:

Borjana Stazic Mandic

Date:

16/05/2008

bject:

AWQC Final Report for Project 'AWQC-

20543' (12/03/2008 - 18/03/2008)

he information contained in this facsimile message may be confidential information and may also be the subject of legal, professional or publi sterest immunity. If you are not the intended recipient, any use, disclosure or copying of the document is unauthorised.

F YOU HAVE RECEIVED THIS MESSAGE IN ERROR PLEASE TELEPHONE Writer's Phone

lessage:

ear Paul,

ttached is the FINAL report for review.

SR: '108874-2008-CSR-8' - DWLBC - Paul Magarey - 07/08 roject: 'AWQC-20543' - DWLBC - Paul Magarey - 07/08

roject Range: 12/03/2008 - 18/03/2008

egards, ohn Winter

lease note AWQC Sample Receipt hours are Monday to Friday 8.30am - 4.30pm.

Hodgson Road, Bolivar, 5110, South Australia

Phone: +61 1300 653 366

Private Mail Bag 3 Sellabury BA 5558

Hougson Read Schult Sk 8110

Yar 1900 ESC 965 Enferred: www.casqc.com.co: Fax: \$1.3 E558 0220 Empir compagnativates com au

DWLBC ATTN: Paul Magarey Leve 11 25 Grenfell St Adelaide SA 5000 AUSTRALIA

16/05/2008

Dear Paul

Please find attached the Final Analytical Report for

Customer Service Request: 108874-2008-CSR-8

Account:

108874

C. Z. L.

Project:

AWQC-20543 DWLBC - Paul Magarey - 07/08

Sample Date Range:

12-March-2008 to 18-March-2008

Yours sincerely,

John Winter Account Manager John.Winter@sawater.com.au

(08) 8259 0257

NATA ACCIPIONATION

A60163338923013

Page 1 of 49
A positiones until of the Euroth Anador-Ram Stator Company Stato

Private Mail Eng 3 Hougson Road Fer 13/8 685 365 Enterior vowecasiquinomosis Selfsbury BA 51/8 6cross 64 8110 Fax: \$1.3 865 6220 Emelli compagnication com au

FINAL REPORT: 36182

Analytical Results

Customer Sample Description Sampling Point Sampled Date Sample Received Date Sample ID

Status Collection Type

Sample 1 93308-DWLBC - Warina 1 Observation Well Unit Number 7030-809 23/04/2008 12:00:00AM 24/04/2008 4:13:04PM 2008 001 2656

Endorsed Customer Collected

Bacteriology	LOR	Result
Iron Bacteria - Heterotrophic T460-01	WMZ-500	201000
Iron Bacteria - Heterotrophic	10	300 /mL
Iron Bacteria - Heterotrophic T460-05	5 WMZ-500	
Iron Bacteria - Microscopia examination		Microscopical examination of the sample did not detect iron associated microorganisms
norganic Chemistry - Metals	LOR	Result
Calcium TIC-001 W09-023		
Calcium	0.1	558 mg/L
Iron - Soluble TIC-004 W09-023		
Iron - Soluble	0.005	0.064 mg/L
Iron - Total TIC-004 W09-023		
Iron - Total	0.005	U.067 mg/L
Magnesium TIC-001 W09-023		
Magnesium	0.3	611 mg/L
Manganese - Soluble TIC-004 W09-02	23	
Manganese - Soluble	0.001	0.686 mg/L
Manganese - Total TIC-004 W09-023		500 AC 605 ACADADA
Manganese - Total	0.001	0.895 mg/L
Potassium TIC-001 W09-023		
Potassium	1.0	83.4 mg/L
Sodium Adsorption Ratio W09-023		
Sodium Adsorption Ratio - Calculation		47.5
Sodium TIC-001 W09-023		
Sodium	0.5	6830 mg/L
Sulphur TIC-001 W09-023		500000 B
Sulphate	1.5	2220 mg/L
Total Hardness as CaCO3 W09-023		
Total Hardness as CaCO3	2.0	3910 mg/L
Inorganic Chemistry - Nutrients	LOR	Result
Chloride T0104-02 W09-023		
Chloride	4.0	11300 mg/L
Fluoride W09-023		
Fluoride	0.10	0.18 mg/L
Corporate Accreditation No. 1115 Chemisal and Biological Testing This document is issued in apportance with NATA's pagreditation regularments.		Notes 1. The last figure of the result value is a significant figure. 2. Samples are analysed as received. 3. If determination of the component is not covered by NATA Accreditation. 4. * Indicates result is out of specification according to the reference Guideline. Refer to Report footer.
WORLD FROM YOUR ACCIPICATION		5. Indicates incident have libera recorded against the acropic. Refer to Report footer. 6. It Indicates the results have changed since the last issued report. 7. The Limit of Reporting (LOPG) is the lowest concentration of analyte which is reported in the AWQC and is based on the LOQ rounded up to a more readily used value. The Limit of Quantitation (LOQ) is the lowest concentration of analyte for which quantitative results may be obtained within a specified degree of confidence. Page 6 of 49.

Page 6 of 49
A DESCRIPTION UNIX OF the EDGP Assertion Water Corporation

Private Mail Sec 3 Sviladury BA 5103 Rodgson Read Scrippr SA 81110 Yer 1309 550 366 Fax: \$1 3 5099 0220

Enfectivit: www.asvqu.com.asi Email: dumogramater.com us

FINAL REPORT: 36182

Ana	lyt	ical	Resu	ts
-----	-----	------	------	----

Customer Sample Description Sampling Point Sampled Date

Sample Received Date Sample ID

Status Collection Type

Sample 1 93308-DWLBC - Warina 1 Observation Well Unit Number 7030-809

23/04/2008 12:00:00AM 24/04/2008 4:13:04PM

2008-001-2655 Endorsed Customer Collected

Nitrate + Nitrite as N T0161-01 W09-023

Dissolved Organic Carbon T0158-09 W09-023

Nitrate + Nitrite as N

0.005

<0.005 mg/L

Organic Chemistry

LOR

Result

Dissolved Organic Carbon

0.3

2.0 mg/L

Inorganic Chemistry - Physical

LOR

Result

353 mg/L

431 mg/L

0 mg/L

Alkalinity Carbonate Bicarbonate and Hydroxide T0101-01 W09-023

Alkalinity as Calcium Carbonate

Bicarbonate Carbonate Hydroxide

Turbidity T0018-01 W09-023

Turbidity

0.1

0 mg/L 0.84 NTU

Inorganic Chemistry - Waste Water

LOR

Result

Suspended Solids T0160-01 W09-023

Suspended Solids

1.0

5 mg/L

Corporate Accreditation No.1115
Chemical and Biological Testing
This document is issued in accordance
with NATA's accreditation requirements.

Notes

1. The text figure of the result value is a significant figure.

2. Samples are analysed as received.

3. Viderrefundron of the component is not covered by NATA Accreditation.

4. * indicates result is out of specification accreding to the reference Guideline, Refer to Report footer.

5. * indicates incident have been recorded against the sample. Refer to Report footer.

6. * indicates the results have changed since the last issued report.

7. The Linit of Reporting (LOR) is the lowest concentration of analyte which is reported at the AWQC and is based on the LOQ counted up to a more resulty used value. The Linit of Quarettestion (LOQ) is the lowest concentration of analyte for which quarethelium results may be obtained within a specified degree of confidence.

Prog 7 of 49 A movembers well of the South Assert Son White Corporation

35852x29 BA 5988

Hodgson Road Ballyer SA 3110

Fer 1991 (80) 946 Internet www.mays.com.au Fer 61 3 8099 (820 Ilmelit com@gazwater.com.au

FINAL REPORT: 36182

Report Information

Project Name Customer CSR_ID

Dantarialami

AWQC-20543 DWLDC

108874-2008-CSR-8

Analytical Results

Customer Sample Description

Sampling Point Sampled Date

Sample Received Date Sample ID Status Collection Type

LOP

93308-DWLBC - Warina 1 Observation Well Unit Number 7030-809 23/04/2008 12:00:00AM

24/04/2008 4:13:00PM 2008-001-2644

Endorsed Customer Collected

Docult

Bacteriology	LOR	Result
Iron Bacteria - Heterotrophic T460-0	01 WMZ-500	
Iron Bacteria - Heterotrophic	10	200 /mL
Iron Bacteria - Heterotrophic T460-0	05 WMZ-500	
Iron Bacteria - Microscopic examination		Microscopical examination of the sample did not detect iron associated microorganisms
Inorganic Chemistry - Metals	LOR	Result
Calcium TIC-001 W09-023		
Calcium	0.1	542 mg/L
Iron - Soluble TIC-004 W09-023		
Iron - Soluble	0.005	0.075 mg/L
Iron - Total TIC-004 W09-023		
Iron - Total	0.005	0.079 mg/L
Magnesium TIC-001 W09-023		
Magnesium	0.3	593 mg/L
Manganese - Soluble TIC-004 W09-	023	
Manganese - Soluble	0.001	0.674 mg/L
Manganese - Total TIC-004 W09-023	3	
Manganese - Total	0.001	0.701 mg/L
Potassium TIC-001 W09-023		
Potassium	1.0	83.0 mg/L
Sodium Adsorption Ratio W09-023		
Sodium Adsorption Ratio - Calculation		48.0
Sodium TIC-001 W09-023		
Sodium	0.5	6800 mg/L
Sulphur TIC-001 W09-023		
Sulphate	1.5	2150 mg/L
Total Hardness as CaCO3 W09-023	3	
Total Hardness as CaCO3	2.0	3800 mg/L
Inorganic Chemistry - Nutrients	LOR	Result

Corporate Accreditation No.1115
Chemical and Biological Testing
This document is issued in accordance
with NATA's accreditation requirements.

Notes

1. The last figure of the result value is a significant figure.

2. Samples are analysed as received.

3. disternation of the operagement is not covered by NATA Accreditation.

4. Indicates result is out of specification according to the reference Guideline. Refer to Report footer.

5. Indicates incident have been recorded against the sample. Refer to Report footer.

6. A indicates the results have changed since the last issued report.

7. The Limit of Reporting LORI; is the lowest concentration of analyte which is reported at the ANTIC and is based on the LOQ rounded up to a more readily used value. The Limit of Quantitation (LOQI) is the lowest concentration of analyte for which quantitative results may be obtained within a specified degree of coefficience.

Page 2 of 49.

ACCIONATES NO

Page 2 of 49 A DESERTION WITH THE SHEET COMPANY OF THE PAGE OF T

Private Mail Bag 1 Heutgeen Road Fer 1998 BB 346 Interview www.com.com.du Sellsburg BA 5968 Bolles Sh 8110 Ferr 61 5 8256 KZXX Ilmelit www.com.eu

FINAL REPORT: 36182

Analytical Results			
Customer Sample Description Sampling Point Sampled Date Sample Received Date Sample ID Status Collection Type	Sample 2 93308-DWLBC - Warina 1 Observation Well Unit Number 7030-809 23/04/2008 12:00:00AM 24/04/2008 4:13:00PM 2008-001-2844 Endorsed Customer Collected		
Chloride T0104-02 W09-023			
Chloride	4.0	11300 mg/L	
Fluoride W09-023			
Fluoride	0.10	0.18 mg/L	
Nitrate + Nitrite as N T0161-01 W09-0	23		
Nitrate + Nitrite as N	0.005	<0.005 mg/L	
Organic Chemistry	LOR	Result	
Dissolved Organic Carbon T0158-09	W09-023		
Dissolved Organic Carbon	0.3	2.0 mg/L	
Inorganic Chemistry - Physical	LOR	Result	
Alkalinity Carbonate Bicarbonate an	d Hydroxide	T0101-01 W09-023	
Alkalinity as Caldium Carbonate	,	356 mg/L	
Bicarbonate		434 mg/L	
Carbonate		0 mg/L	
Hydroxide		0 mg/L	
Turbidity T0018-01 W09-023			
Turbidity	0.1	0.61 NTU	
Inorganic Chemistry - Waste Water	LOR	Result	
Suspended Solids T0160-01 W09-023	3		
Suspended Solids	1.0	13 mg/L	

Corporate Accreditation No.1115
Chemical and Biological Testing
This document is issued in accordance with NATA's accreditation requirements.

- Notes

 1. The last figure of the result value is a significant figure.

 2. Surryles are analysed as received.

 3. 9 determination of the component is not covered by NATA Accreditation.

 4. Indicates result is out of specification according to the reference Guideline. Refer to Report Footer.

 5. Indicates incident have been recorded against the sample. Refer to Report footer.

 7. The Limit of Reporting (LOR) is the lowest concentration of analyse which is reported at the AWDC and its based on the LOQ rounded up to a more readily used value. The Limit of Quantitation (LOQ) is the lowest concentration of analyse for which quantitative results may be obtained within a specified degree of confidence.

 Page 2 of 49.

Pega 3 of 40
A positiones with all the Sandh Austration State Corporation

Private Mail Eng 3 Selisbury BA 5168

Hodgson Road Bestuur SA 8110

Yerr 1906 652: 966 Face: 61 5 805/9 0220

internet: www.awgo.com.au limest: awgs@sawater.com.uu

FINAL REPORT: 36182

Analytical Results

Customer Sample Description Sampling Point Sampled Date Sample Received Date

Sample ID Status Collection Type

Sample 3 93308-DWLBC - Warina 1 Observation Well Unit Number 7030-809 23/04/2008 12:00:00AM 24/04/2008 4:12:58PM *2008 001 2645 Endorsed Customer Collected

Bacteriology	LOR	Result
Iron Bacteria - Heterotrophic T460-01 W	/MZ-500	
Iron Bacteria - Heterotrophic	10	80 /mL
Iron Bacteria - Heterotrophic T460-05 W	/MZ-500	
Iron Bacteria - Microscopie examination		Microscopical examination of the sample did not detect iron associated microorganisms
Inorganic Chemistry - Metals	LOR	Result
Calcium TIC-001 W09-023		
Caldium	0.1	536 mg/L
Iron - Soluble TIC-004 W09-023		
Iron - Soluble	0.005	0.042 mg/L
Iron - Total TIC-004 W09-023		
Iron - Total	0.005	0.042 mg/L
Magnesium TIC-001 W09-023		
Magnesium	0.3	588 mg/L
Manganese - Soluble TIC-004 W09-023		
Manganese - Soluble	0.001	0.711 mg/L
Manganese - Total TIC-004 W09-023		
Manganese - Total	0.001	0.709 mg/L
Potassium TIC-001 W09-023		
Potassium	1.0	76.3 mg/L
Sodium Adsorption Ratio W09-023		
Sodium Adsorption Ratio - Calculation		47.5
Sodium TIC-001 W09-023		
Sodium	0.5	6690 mg/L
Sulphur TIC-001 W09-023		
Sulphate	1.5	2130 mg/L
Total Hardness as CaCO3 W09-023		
Total Hardness as CaCO3	2.0	3760 mg/L
Inorganic Chemistry - Nutrients	LOR	Result
Chloride T0104-02 W09-023		
Chloride	4.0	11400 mg/L
Fluoride W09-023		
Fluoride	0.10	0.18 mg/L
Corporate Accreditation No.1115 Chamical and Biological Yesting This document is leaved in securdance		Notes 1. The last figure of the result value is a significant figure. 2. Samples are analysed as received.
NATA with NATA's accorditation requirements.		 Samples are snaysed as received. If determination of the component is not covered by NATA Accreditation. Indicates result is our of specification according to the reference Guideline. Refer to Report Sooter. Indicates incident have been recorded against the sample. Refer to Report Sooter. Indicates the results have changed since the last issued report.
mata, a made de deservice. Accontectation		7. The Limit of Reporting (LDR) is the lowest concentration of analyte which he reported at the AWQC and is based on the LDQ rounded up to a more readily used value. The Limit of Quantitation (LQQ) is the lowest concentration of analyte for which quantitative results may be obtained within a specified degree of confidence.
ABI 63336325W3		Page 4 of 49 A Described work of the South Australian Vision Corporation

Private Mail Slag 3 Salishery BA 5103 Hodgson Read Softwar SA 2310 Tor 1996 650 866 Fax: \$1.38259 6220

Internet: waw.compa.com.du Honeil: axeran@burwater.com eu

Water Quality Centre

FINAL REPORT: 36182

Analy	utical	Ros	ulte
AHIAH	vucai	1763	unto

Customer Sample Description Sampling Point

Sampled Date

Sample Received Date Sample ID

Status Collection Type Sample 3

93308-DWLBC - Warina 1 Observation Well Unit Number 7030-809

23/04/2008 12:00:00AM 24/04/2008 4:12:58PM

2008-001-2645 Endorsed Customer Collected

Nitrate + Nitrite as N T0161-01 W09-023

Nitrate + Nitrite as N

0.005

<0.005 mg/L

Result

LOR Organic Chemistry Dissolved Organic Carbon T0158-09 W09-023

Dissolved Organio Carbon

1.9 mg/L 0.3

Inorganic Chemistry - Physical LOR Result

Alkalinity as Calcium Carbonate Bicarbonate

Carbonate Hydroxide

Alkalinity Carbonate Bicarbonate and Hydroxide T0101-01 W09-023 352 mg/L

> 430 mg/L 0 mg/L 0 mg/L

Turbidity T0018-01 W09-023

Turbidity

0.1

0.77 NTU Result

Inorganic Chemistry - Waste Water Suspended Solids T0160-01 W09-023

Suspended Solids

1.0

LOR

12 mg/L

Corporate Accreditation No.1115
Chemical and Biological Testing
This document is issued in accordance
with NATA's accreditation requirements.

Notes

1. The last figure of the result value is a significant figure.

Samples or analysed as received.
 Samples are analysed as received.
 Samples are analysed as received.
 Samples are analysed as received.
 National statement of the component is not covered by NATA Accreditation.
 National statement is not of specification according to the reference Guideline. Refer

4. "indicates result is out of specification according to the reference Guidalins. Refer to Report Footer.
5. "Indicates Incident have been recorded against the sample. Refer to Report Footer.
6. 8. Indicates the results have changed since the last issued report.
7. The Limit of Reporting LORg is the lowest concentration of analyte which is reported at the AWQC and is based on the LOQ rounded up to a more readily used value. The Limit of Quantitation (LOQ) is the lowest concentration of analyte for which quantitative results may be obtained within a specified degree of confidence.

A865 6333355253743

Prom 5 of 49
A constitutes with of the South Assertition Water Companies

Privute Mail Bag 3 Salisbury BA \$108

Housever Road Fer 1908 660 969 Enternet verwarregundense Gotter (de 1930 Fax: 61 8 609 6020 Emelt warrestwerker over au

FINAL REPORT: 36182

Anab	dical	Resul	te
Allan	yucai	Nesu	LO

Customer Sample Description Sampled Date Sampled Date Sample Received Date Sample ID Status Collection Type

Sample 4 93308-DWLBC - Warina 1 Observation Well Unit Number 7030-809 23/04/2008 8:30:00PM 24/04/2008 4:13:02PM 2008-001-2646

Endorsed Customer Collected

Bacteriology	LOR	Result
Iron Bacteria - Heterotrophic T460-0	1 WMZ-500	
Iron Bacteria - Heterotrophic	10	120 /mL
Iron Bacteria - Heterotrophic T460-0	5 WMZ-500	
Iron Dacteria - Microscopic exemination		Microscopical examination of the sample did not detect iron associated microorganisms
Inorganic Chemistry - Metals	LOR	Result
Calcium TIC-001 W09-023		
Calcium	0.1	532 mg/L
Iron - Soluble TIC-004 W09-023		
Iron - Soluble	0.005	0.041 mg/L
Iron - Total TIC-004 W09-023		
Iron - Total	0.005	0.044 mg/L
Magnesium TIC-001 W09-023		
Magnesium	0.3	584 mg/L
Manganese - Soluble TIC-004 W09-0	123	
Manganese - Soluble	0.001	0.674 mg/L
Manganese - Total TIC-004 W09-023		
Manganese - Total	0.001	0.707 mg/L
Potassium TIC-001 W09-023	0.001	one inge
Potassium	1.0	75.8 mg/L
Sodium Adsorption Ratio W09-023		1 and Trigra
Sodium Adsorption Ratio - Calculation		48.2
Sodium TIC-001 W09-023		40.2
Sodium 11C-001 W09-023	0.5	6770 ma/L
	0.0	orro nige
Sulphur TIC-001 W09-023	1.5	2110 mg/L
Sulphate		2110 ligit
Total Hardness as CaCO3 W09-023		2720 5
Total Hardness as CaCO3	2.0	3730 mg/L
Inorganic Chemistry - Nutrients	LOR	Result
Chloride T0104-02 W09-023		
Chloride	4.0	11300 mg/L
Fluoride W09-023	55.55	
Fluoride	0.10	0.18 mg/L
1 form over	0.10	
Corporate Accreditation No.1115		Notes
Chemical and Biological Testing This document is issued in accordance		 The lost figure of the result value is a significant figure. Samples are analysed as received.
NATA with NATA's accreditation requirements	L.	 8 determination of the component is not covered by NATA Accreditation. 4. * Indicates result is out of specification according to the reference Guideline. Refer
		to Report Socier. 5. * Indicates incident have been recorded against the sample. Refer to Report Socier.
mula a sacra consecto		8. & Indicates the results have changed since the last issued report.
новью пьсточнь со ассениретатрон		7. The Limit of Reporting (LDR) is the lowest concentration of analyte which is reported at the AWQC and is based on the LOQ rounded up to a more readily used value. The Limit of Quantitation (LOQ) is the lowest concentration of analyte for which quantitative results may be obtained within a specified degree of confidence.
		Page 8 of 43

А постыса от 8 от 8 от 5 миня Анатэй по Water Corporation

Private Mail Bag 3 Sallabury BA 55188

Hodgson Knad Ballust SA 8110

Fair 1906 660 945 Enferred: www.anngc.com.au Fair 61 9 658 6200 Email: awgs@sewater.com ex

Nater Quality Centre

FINAL REPORT: 36182

Analytical Results

Customer Sample Description

Sampling Point

Sampled Date Sample Received Date Sample ID Status

Sample 4 93308-DWLBC - Warina 1 Observation Well Unit Number 7030-809

23/04/2008 8:30:00PM 24/04/2008 4:13:02PM

2008-001-2646 Endorsed Customer Collected

Nitrate + Nitrite as N T0161-01 W09-023

Nitrate + Nitrite as N

Collection Type

0.005

<0.005 mg/L

Organic Chemistry LOR

Dissolved Organic Carbon T0158-09 W09-023 Diazolved Organic Garbon

1.9 mg/L

Result

Inorganic Chemistry - Physical

LOR

Result

354 mg/L 432 mg/L

0 mg/L

Alkalinity Carbonate Bicarbonate and Hydroxide T0101-01 W09-023

Alkalinity as Caldium Carbonate

Turbidity T0018-01 W09-023

Bicarbonate Carbonate Hydroxide

0.1

0 mg/L

Turbidity

0.66 NTU Result

Inorganic Chemistry - Waste Water Suspended Solids T0160-01 W09-023

Suspended Solids

1.0

LOR

5 mg/L

Corporate Accreditation No.1115
Chemical and Biological Testing
This document is issued in accordance
with NATA's accreditation requirements

Notes

1. The best figure of the result value is a significant figure,
2. Samples are analysed as received.
3. 8 determination of the component is not covered by NATA Accreditation.
4. * Indicates result is out of specification according to the reference Guideline. Refer to Report Tooter.
5. * Indicates incident have been recorded against the sample, Refer to Report footer.
6. Indicates the results have changed since the last issued report.
7. The Limit of Reporting [LOR] is the lowest concentration of analyte which is reported in the AWOC and is based on the LOR rounded up to a more readily used value. The Limit of Quantitation [LOQ] is the lowest concentration of analyte for which quantitative results may be obtained within a specified degree of confidence.

Place 9 of 46

ASKI 63336925013

Page 9 of 49
A prostorees with of the Supply Asservices Water Companies

Private Mail Bag 3 Selisbury BA \$103

Hudgyon Road For 1900 600 366 Inferreit www.awyo.com.uu Bortuu Sk 8130 For 61 84259 0220 Brindt ownn@ssewaer.com.uu

FINAL REPORT: 36182

Analytical Results

Customer Sample Description Sampling Point Sampled Date Sample Received Date Sample ID

Status Collection Type

1 hour 93309-DWLBC - Lock & Production Bere Unit Number 7030-710 26/04/2008 12:00:00AM 28/04/2008 11:03:06AM *2008-001-2641 Endorsed Customer Collected

Bacteriology	LOR	Result
Iron Bacteria - Heterotrophic T460-0	1 WMZ-500	
Iron Bacteria - Heterotrophic	10	<10 /mL
Iron Bacteria - Heterotrophic T460-0	5 WMZ-500	
Iron Becteria - Microscopio examination		Microscopical examination of the sample did not detect iron associated microorganisms
norganic Chemistry - Metals	LOR	Result
Calcium TIC-001 W09-023		
Calcium	0.1	589 mg/L
Iron - Soluble TIC-004 W09-023		
Iron - Soluble	0.005	1.688 mg/L
Iron - Total TIC-004 W09-023		
Iron - Total	0.005	1.727 mg/L
Magnesium TIC-001 W09-023		
Magnesium	0.3	1380 mg/L
Manganese - Soluble TIC-004 W09-0		
Manganese - Soluble	0.001	0.026 mg/L
Manganese - Total TIC-004 W09-023		
Manganese - Total	0.001	0.026 mg/L
Potassium TIC-001 W09-023	0.001	0.020 1195
Potassium	1.0	161 mg/L
Sodium Adsorption Ratio W09-023	1.0	101 tilgie
Sodium Adsorption Ratio - Calculation		58.7
Sodium TIC-001 W09-023		<i>190.7</i>
	0.5	11400 mg/L
Sodium	0.5	11400 Hight
Sulphur TIC-001 W09-023	1.5	6070 mall
Sulphate	1.0	6270 mg/L
Total Hardness as CaCO3 W09-023		7450 11
Total Hardness as CaCO3	2.0	7150 mg/L
Inorganic Chemistry - Nutrients	LOR	Result
Ammonia as N T0100-01 W09-023		
Ammonia as N	0.005	0.224 mg/L
Chloride T0104-02 W09-023		
Chloride 10104-02 W03-023	4.0	18900 mg/L
Service 1986		
Corporate Accreditation No.1115 Chemical and Biological Testing		Notes 1. The last figure of the result value is a significant figure.
This document is issued in accordance with NATA's accreditation requirements.		 Samples are analysed as received. # determination of the component is not covered by NATA Accreditation.
NATA		 indicates result is out of specification according to the reference Guideline. Refer to Report footer.
		5. * Indicates incident have been recorded against the sample. Refer to Report footer.
WARLES THE CONTROL OF T		6. 8. Indicates the results have changed since the last issued report. 7. The Limit of Reporting (LOR) is the lowest concentration of analyte which is reported at the AWQC and is based on the LOQ counted up to a more readily used value. The Limit of Quarritation (LOQ) is the lowest concentration of analyte for which quantitative results may be obtained within a specified degree of confidence.
		Page 10 of 40

ABB 63336936943

Private Mail Bag 3 Hodgron Sacd For 1998 853 995 Intervel: www.awgu.chm.du Sellabery BA \$109 Bicross 64 8190 For: \$1.9829 0220 Empir certification vo.

FINAL REPORT: 36182

Analytical Results			
Customer Sample Description Sampling Point Sampled Date Sample Received Date Sample ID Status Collection Type	1 93309-DWLBC - Lock 6 Production Bore Unit Number 7030-710 26/04/2008 12:00:00AM 28/04/2008 11:03:06AM *2008-001-2841 Endorsed Customer Collected		
Fluoride W09-023			
Fluoride	0.10	1.9 mg/L	
Nitrate + Nitrite as N T0161-01 W09-023	3		
Nitrate + Nitrite as N	0.005	<0.005 mg/L	
Nitrogen - Total W09-023			
Nitrogen - Total	0.05	0.22 mg/L	
Phosphorus - Filterable Reactive as P	T0108-01 W		
Phosphorus - Filterable Reactive as P	0.005	0.050 mg/L	
Phosphorus - Total T0109-01 W09-023			
Phosphorus - Total	0.005	0.059 mg/L	
TKN as N T0112-01 W09-023			
TIKN as Nitrogen	0.05	0.18 mg/L	
Organic Chemistry	LOR	Result	
Dissolved Organic Carbon T0158-09 W	/09-023		
Dissolved Organic Carbon	0.3	0.9 mg/L	
Inorganic Chemistry - Physical	LOR	Result	
Alkalinity Carbonate Bicarbonate and	Hydroxide	T0101-01 W09-023	
Alkalinity as Calcium Carbonate		246 mg/L	
Bicarbonate		300 mg/L	
Carbonate		0 mg/L	
Hydroxide		0 mg/L	
Turbidity T0018-01 W09-023	2.4	e e MTH	
Turbidity	0.1	6.6 NTU	
Inorganic Chemistry - Waste Water	LOR	Result	
Suspended Solids T0160-01 W09-023			
Suspended Solids	1.0	10 mg/L	
Volatile Suspended Solids W09-023			
Volatile Suspended Solids	1	2 mg/L	

Corporate Accreditation No.1115 Chemical and Biological Testing This document is issued in accordance with NATA's accreditation requirements.

- Notes

 1. The last figure of the result value is a significant figure.

 2. Samples are analysed as received.

 3. If determination of the somponent is not sovered by NATA Accreditation.

 4. "Indicates result is out of specification according to the reference Studistine. Refer to Report Footer.

 5. "Indicates incident have been recorded against the sample. Refer to Report footer.

 6. Indicates the results have changed since the last issued report.

 7. The Limit of Reporting (LOR) is the lowest concentration of analyse which is reported at the AWQC and is based on the LOQ rounded up to a noise readily used value. The Limit of Quantitation (LOQ) is the lowest concentration of analyse which is quantitative results may be obtained within a specified degree of confidence.

 Page 11 of 40.

Page 11 of 49 A musinusa unit of the family Josephism Water Corporation

Private Mall Bap 3 Selisbury BA 9908

Hodgeun Road Ter 1988 883 345 Inferret: www.compo.com.au Bollue Sk 8110 Fax: \$1.3 8259 8220 Ilmell: away@sawater.com.wu

Aggresian Water Quality Centre

FINAL REPORT: 36182

Analytical Results

Customer Sample Description

Sampling Point Sampled Date Sample Received Date Sample ID

Status Collection Type

3 NourS 93309-DWLBC - Lock 6 Production Bore Unit Number 7030-710 26/04/2008 12:00:00AM 28/04/2008 11:02:57AM

*2008-001-2642

Endorsed Customer Collected

Bacteriology		LOR	Result
Iron Bacteria - H	leterotrophic T460-01	WMZ-500	
Iron Bacteria - Heter		10	<10 /mL
Iron Bacteria - H	leterotrophic T460-05	WMZ-500	
Iron Bacteria - Micro			Microscopical examination of the sample did not detect iron associated microorganisms
norganic Chemi	istry - Metals	LOR	Result
Calcium TIC-00	1 W09-023		
Calcium		0.1	594 mg/L
Iron - Soluble Ti	IC-004 W09-023		
Iron - Soluble		0.005	1.719 mg/L
Iron - Total TIC-	004 W09-023		
Iron - Total		0.005	1.756 mg/L
Magnesium TIC	-001 W09-023		
Magnesium		0.3	1390 mg/L
	oluble TIC-004 W09-02	3	
Manganese - Solubl		0.001	0.028 mg/L
-	otal TIC-004 W09-023		
Manganese - Total		0.001	0.027 mg/L
Potassium TIC-	001 W09-023		
Potassium		1.0	162 mg/L
Sodium Adsorp	tion Ratio W09-023		
Sodium Adsorption			57.9
Sodium TIC-001	1 W09-023		
Sodium		0.5	11300 mg/L
Sulphur TIC-00	1 W09-023		
Sulphate		1.5	6330 mg/L
	as CaCO3 W09-023		
Total Hardness as C		2.0	7210 mg/L
Inorganic Chem	istry - Nutrients	LOR	Result
Ammonia as N	T0100-01 W09-023		
Ammonia as N		0.005	0.217 mg/L
Chloride T0104	-02 W09-023		
Chloride		4.0	17700 mg/L
	rporate Accreditation No.1115		Notes
	emical and Biological Testing is document is issued in accordance		 The last figure of the result value is a significant figure. Samples are analysed as received.
	h NATA's scareditation requirements.		 8 determination of the component is not covered by NATA Accreditation. 4. * indicates result is out of specification according to the reference Guideline. Refer
			to Report footer.
wunua nacecenace			 * indicates incident have been recorded against the sample. Refer to Report footer. 6. 6. Indicates the results have changed since the last issued report.
ACCREDITATION			7. The Limit of Reporting (LOR) is the lowest concentration of analyte which is reported at the AVIOC and is based on the LOR rounded up to a more readily used value. The Limit of Quantization (LOQ) is the lowest concentration of analyte for which quantizative results may be obtained within a specified degree of confidence.
			Page 12 of 49 A transmission well of the South Propertium Water Corporation

A009 63336525743

A postness well of the South Australian Water Corporation

Private Mail Bag 1 Hodgern Road Ter 1998 863 346 Intervet www.componentals 348sbury SA 5165 Bollvier SA 3110 Ferr \$1.54656 8200 Illinoi? compogramater.com es

FINAL REPORT: 36182

Analytical Results			
Customer Sample Description Sampling Point Sampled Date Sample Received Date Sample ID Status Collection Type	3 93309-DWLBC - Lock 6 Production Bore Unit Number 7030-710 26/04/2008 11:02:57AM *2008-001-2612 Endorsed Customer Collected		
Fluoride W09-023			
Fluoride	0.10	1.9 mg/L	
Nitrate + Nitrite as N T0161-01 W09-02			
Nitrate + Nitrite as N	0.005	<0.005 mg/L	
Nitrogen - Total W09-023			
Nitrogen - Total	0.05	0.24 mg/L	
Phosphorus - Filterable Reactive as P			
Phosphorus - Filterable Reactive as P	0.005	0.060 mg/L	
Phosphorus - Total T0109-01 W09-023			
Phosphorus - Total	0.005	0.062 mg/L	
TKN as N T0112-01 W09-023			
TKN as Nitrogen	0.05	0.24 mg/L	
Organic Chemistry	LOR	Result	
Dissolved Organic Carbon T0158-09 \	V09-023		
Dissolved Organic Carbon	0.3	0.8 mg/L	
Inorganic Chemistry - Physical	LOR	Result	
Alkalinity Carbonate Bicarbonate and	d Hydroxide	T0101-01 W09-023	
Alkalinity as Caldium Carbonate		246 mg/L	
Bicarbonate		300 mg/L	
Carbonate		0 mg/L	
Hydroxide		0 mg/L	
Turbidity T0018-01 W09-023			
Turbidity	0.1	G.3 NTU	
Inorganic Chemistry - Waste Water	LOR	Result	
Suspended Solids T0160-01 W09-023			
Suspended Solids	1.0	9 mg/L	
Volatile Suspended Solids W09-023			
Volatile Suspended Solids	1	2 mg/L	

Corporate Accreditation No.1115
Chemical and Biological Testing
This document is issued in accordance
with NATA's accreditation requirements.

Notes

1. The lost figure of the result value is a significant figure.

2. Snepties are analysed as received.

3. If deterniarytion of the component is not covered by NATA Accreditation.

4. Indicates result is cut of specification according to the reference Guideline. Refer to Report footer.

5. Indicates incident have been recorded against the sample. Refer to Report footer.

6. Indicates the results have changed since the fave leaved report.

7. The Limit of Reporting (LDR) is the lowest concentration of analyte which is reported at the AWQC and is bosed on the LQQ rounded up to a more result) used value. The Limit of Quantification (LQQ) is the lowest concentration of analyte for which quantificate results may be obtained within a specified degree of confidence.

Page 13 of 49

A Desemble and the South Assertian Visite Corporation

Private Mail Bag 3 Hoogen Road Tar 1998 653 966 Internet wave.covicions.co. Skillsburg SA 5106 Bolivar SA 5110 Ferr \$1.84559 6220 Ilmail: owng@saveter.com.sc

FINAL REPORT: 36182

Analytical Results

Customer Sample Description Sampling Point Sampled Date Sample Received Date Sample ID

6 Mours 93309-DWLBC - Lock 6 Production Bore Unit Number 7030-710 26/04/2008 12:00:00AM 28/04/2008 11:02:43AM *2008-001-2643 Endorsed Customer Collected

Status Collection Type

Bacteriology	LOR	Result
Iron Bacteria - Heterotrophic T460-0	1 WMZ-500	
Iron Bacteria - Heterotrophic	10	<10 /mL
Iron Bacteria - Heterotrophic T460-0	5 WMZ-500	
Iron Dacteria - Microscopio examination		Microscopical examination of the sample did not detect iron associated microorganisms
Inorganic Chemistry - Metals	LOR	Result
Calcium TIC-001 W09-023		
Calcium	0.1	589 mg/L
Iron - Soluble TIC-004 W09-023		
Iron - Soluble	0.005	1.734 mg/L
Iron - Total TIC-004 W09-023		
Iron - Total	0.005	1./90 mg/L
Magnesium TIC-001 W09-023		
Magnesium	0.3	1380 mg/L
Manganese - Soluble TIC-004 W09-0	23	
Manganese - Soluble	0.001	0.028 mg/L
Manganese - Total TIC-004 W09-023		
Manganese - Total	0.001	0.028 mg/L
Potassium TIC-001 W09-023		
Potassium	1.0	161 mg/L
Sodium Adsorption Ratio W09-023		
Sodium Adsorption Ratio - Calculation		59.2
Sodium TIC-001 W09-023		
Sodium	0.5	11500 mg/L
Sulphur TIC-001 W09-023		
Sulphate	1.5	6240 rng/L
Total Hardness as CaCO3 W09-023		
Total Hardness as CaCO3	2.0	7150 mg/L
Inorganic Chemistry - Nutrients	LOR	Result
Ammonia as N T0100-01 W09-023		
Ammonia as N	0.005	0.222 mg/L
Chloride T0104-02 W09-023		
Chloride	4.0	17200 mg/L
(FILE OF FILE OF THE OF		85.03
Corporate Accreditation No. 1115 Chemical and Biological Testing		Notes 1. The last figure of the result value is a significant figure.
This document is issued in accordance		 Symplex are analysed as received. # determination of the component is not covered by NATA Accreditation.
NATA		 A Indicates result is out of specification according to the reference Guideline. Refer
		to Report footer. 5. * Indicates incident have been recorded against the sample. Refer to Report footer.
MORE A THOM		6. A Indicates the results have changed since the last issued report. 7. The Limit of Reporting (LDR) is the lowest concentration of analyte which is reported at the AWQC and is based on the LDQ rounded up to a more resulty used value. The Limit of Quantitation (LQQ) is the lowest concentration of analyte for which quantitative results may be obtained within a specified degree of confidence.
		Page 14 of 49

A newtoose ordered by the Scottly Australian Water Corporation

Private Mail Bag 3 Salishury BA \$103

Hodgeon Rood - Yer 1908 850 966 - Internet www.cavqu.coco.cu - Schurt (H. 8199 - Fox 61 8 859 0720 - Emnit wave.gavqu.coco.cu

Water Quality Centre

FINAL REPORT: 36182

Analytical Results			
Customer Sample Description Sampling Point Sampled Date Sample Received Date Sample ID Status Collection Type	6 93309-DWLBC - Lock 6 Production Bore Unit Number 7030-710 26/04/2008 12:00:00AM 28/04/2008 11:02:43AM *2008-001-2643 Endorsed Customer Collected		
Fluoride W09-023			
Fluoride	0.10	1.9 mg/L	
Nitrate + Nitrite as N T0161-01 W09-023	3		
Nitrate + Nitrite as N	0.005	<0.005 mg/L	
Nitrogen - Total W09-023			
Nitrogen - Total	0.05	0.22 mg/L	
Phosphorus - Filterable Reactive as P	T0108-01 W	09-023	
Phosphorus - Filterable Reactive as P	0.005	0.042 mg/L	
Phosphorus - Total T0109-01 W09-023			
Phosphorus - Total	0.005	0.059 mg/L	
TKN as N T0112-01 W09-023			
TKN as Nitrogen	0.05	0.20 mg/L	
Organic Chemistry	LOR	Result	
Dissolved Organic Carbon T0158-09 W	/09-023		
Dissolved Organic Carbon	0.3	0.8 mg/L	
Discourse original original			
Inorganic Chemistry - Physical	LOR	Result	
Alkalinity Carbonate Bicarbonate and	Hydroxide	T0101-01 W09-023	
Alkalinity as Caldum Carbonate		246 mg/L	
Bicarbonate		300 mg/L	
Carbonate		0 mg/L	
Hydroxide		0 mg/L	
Turbidity T0018-01 W09-023			
Turbidity	0.1	7.6 NTU	
Inorganic Chemistry - Waste Water	LOR	Result	
Suspended Solids T0160-01 W09-023			
Suspended Solids	1.0	17 mg/L	
Volatile Suspended Solids W09-023			
Volatile Suspended Solids	1	3 mg/L	

Corporate Accreditation No. 1115
Chemical and Biological Testing
This document is issued in accordance
with NATA's accreditation requirements.

- Notes
 1. The last figure of the result value is a significant figure.
 2. Samples are analysed as received.
 3. 8 detarmination of the component is not covered by NATA Accreditation.
 4. * Indicates result is out of specification according to the reference Guideline, Refer to Report footer.
 5. * Indicates incident have been recorded against the sample. Refer to Report footer.
 6. Indicates the results have changed since the Indi Issued report.
 7. The Limit of Reporting (LDR) is the lowest concentration of analyte which is reported at the AWQC and is based on the LDQ counted up to a more result) was a value. The Limit of Quarribation (LDQ is the lowest concentration of analyte for which equarities the results may be obtained within a specified degree of confidence.

 Page 15 of 49

A601633345355743

Page 15 of 49
A page mass over of the Emph Asserblant Value Corporation

Proceeding 8 and 1 Hodgeon Road Tw. 1908 853,366 Inferred; www.carqu.com.au Sellsburg 8A 5408 Solitar Sh 8130 For \$1 8 8559 8220 Email: carpa@carvates.com.au

FINAL REPORT: 36182

Analytical Results

Customer Sample Description Sampling Point Sampled Date Sample Received Date Sample ID Status Collection Type

10 hours 93309-DWLBC - Lock 6 Production Bore Unit Number 7030-710 26/04/2008 12:00:00AM 28/04/2008 11:02:45AM *2008-001-2648

Endorsed Customer Collected

Bacteriology	LOR	Result
Iron Bacteria - Heterotrophic T460-01	WMZ-500	
Iron Bacteria - Heterotrophic	10	<10 /mL
Iron Bacteria - Heterotrophic T460-05	WMZ-500	
Iron Bacteria - Microscopic examination		Microscopical examination of the sample did not detect iron associated microorganisms
norganic Chemistry - Metals	LOR	Result
Calcium TIC-001 W09-023		
Calcium	0.1	590 mg/L
Iron - Soluble TIC-004 W09-023		
Iron - Soluble	0.005	1.730 mg/L
Iron - Total TIC-004 W09-023		
Iron - Total	0.005	1.811 mg/L
Magnesium TIC-001 W09-023		
Magnesium	0.3	1380 mg/L
Manganese - Soluble TIC-004 W09-02	23	
Manganese - Soluble	0.001	0.029 mg/L
Manganese - Total TIC-004 W09-023		
Manganese - Total	0.001	0.029 mg/L
Potassium TIC-001 W09-023		
Potassium	1.0	161 mg/L
Sodium Adsorption Ratio W09-023		
Sodium Adsorption Ratio - Calculation		57.6
Sodium TIC-001 W09-023		
Sodium	0.5	11200 mg/L
Sulphur TIC-001 W09-023		
Sulphate	1.5	6300 mg/L
Total Hardness as CaCO3 W09-023	110	
Total Hardness as CaCO3	2.0	7160 mg/L
TOTAL PROJECTS BY OROUGH		
Inorganic Chemistry - Nutrients	LOR	Result
Ammonia as N T0100-01 W09-023		
Ammonia as N	0.005	0.229 mg/L
Chloride T0104-02 W09-023		
Chloride	4.0	17400 mg/L
Corporate Accreditation No.1115		Notes
Chemical and Biological Testing This document is issued in accordance		 The last figure of the result value is a significant figure. Samples are analysed as received.
NATA with NATA's accreditation requirements.		 8 determination of the component is not covered by NATA Accreditation. 4. Indicates result is out of specification according to the reference Guideline. Refer
		to Report footer. 6. * Indicates incident have-been recorded against the sample. Refer to Report footer.
water of the control		6. & Indicates the results have changed since the last issued report.
ACCMEDITATION		7. The Limit of Reporting (LOR) is the lowest concentration of analyte which is reported at the AWQC and is based on the LOQ rounded up to a more readly used value. The Limit of Quantitation (LOQ) is the lowest concentration of analyte for which quantitative results may be obtained within a specified degree of confidence.
ANG STASSAGRU		Page 16 of 40 A resembles will of the fourth Assessment Groze Corporation

Privote Mail Blog 3 Swisbury BA \$108

Hodgson Road Fer 1986 E85 996 Enternet www.carquichm.com ou Scriver SA E990 Fax: 61 3 E559 0220 Enternet: www.carquichm.com ou

FINAL REPORT: 36182

Analytical Results			
Customer Sample Description Sampling Point Sampled Date Sample Received Date Sample ID Status Collection Type	10 93309-DWLBC - Lock 6 Production Bore Unit Number 7030-710 26/04/2008 12:00:00AM 28/04/2008 11:002:45AM *2008-001-2648 Endorsed Customer Collected		
Fluoride W09-023	0.10	1.9 mg/L	
Nitrate + Nitrite as N T0161-01 W09-023	0.10	1.8 mg/L	
Nitrate + Nitrite as N	0.005	<0.005 mg/L	
Nitrogen - Total W09-023	0.000	Total Ingia	
Nitrogen - Total	0.05	0.30 mg/L	
Phosphorus - Filterable Reactive as P T	0108-01 W09-02	_	
Phosphorus - Filterable Reactive as P	0.005	0.045 mg/L	
Phosphorus - Total T0109-01 W09-023			
Phosphorus - Total	0.005	0.064 mg/L	
TKN as N T0112-01 W09-023			
TKN as Nitrogen	0.06	0.29 mg/L	
Organic Chemistry	LOR	Result	
Organic Chemistry Dissolved Organic Carbon T0158-09 W0		Result	
		Result 0.8 mg/L	
Dissolved Organic Carbon T0158-09 WC	9-023		
Dissolved Organic Carbon T0158-09 WC Dissolved Organic Carbon	09-023 0.3 LOR	0.8 mg/L Result	
Dissolved Organic Carbon T0158-09 WC Dissolved Organic Carbon Inorganic Chemistry - Physical	09-023 0.3 LOR	0.8 mg/L Result	
Dissolved Organic Carbon T0158-09 WC Dissolved Organic Carbon Inorganic Chemistry - Physical Alkalinity Carbonate Bicarbonate and H	09-023 0.3 LOR	0.8 mg/L Result -01 W09-023	
Dissolved Organic Carbon T0158-09 WC Dissolved Organic Carbon Inorganic Chemistry - Physical Alkalinity Carbonate Bicarbonate and H Alkalinity as Caldium Carbonate	09-023 0.3 LOR	0.8 mg/L Result -01 W09-023 246 mg/L 300 mg/L 0 mg/L	
Dissolved Organic Carbon T0158-09 WC Dissolved Organic Carbon Inorganic Chemistry - Physical Alkalinity Carbonate Bicarbonate and Halkalinity as Calcium Carbonate Bicarbonate Carbonate Hydroxide	09-023 0.3 LOR	0.8 mg/L Result -01 W09-023 248 mg/L 300 mg/L	
Dissolved Organic Carbon T0158-09 WC Dissolved Organic Carbon Inorganic Chemistry - Physical Alkalinity Carbonate Bicarbonate and H Alkalinity as Caldium Carbonate Bicarbonate Carbonate	99-023 0.3 LOR Hydroxide T0101	0.8 mg/L Result -01 W09-023 246 mg/L 300 mg/L 0 mg/L	
Dissolved Organic Carbon T0158-09 WC Dissolved Organic Carbon Inorganic Chemistry - Physical Alkalinity Carbonate Bicarbonate and Halkalinity as Calcium Carbonate Bicarbonate Carbonate Hydroxide	09-023 0.3 LOR	0.8 mg/L Result -01 W09-023 246 mg/L 300 mg/L 0 mg/L	
Dissolved Organic Carbon T0158-09 WC Dissolved Organic Carbon Inorganic Chemistry - Physical Alkalinity Carbonate Bicarbonate and Halkalinity as Caldium Carbonate Bicarbonate Carbonate Hydroxide Turbidity T0018-01 W09-023	99-023 0.3 LOR Hydroxide T0101	0.8 mg/L Result -01 W09-023 246 mg/L 300 mg/L 0 mg/L	
Dissolved Organic Carbon T0158-09 WC Dissolved Organic Carbon Inorganic Chemistry - Physical Alkalinity Carbonate Bicarbonate and H Alkalinity as Caldium Carbonate Bicarbonate Carbonate Carbonate Hydroxide Turbidity T0018-01 W09-023 Turbidity	09-023 0.3 LOR Hydroxide T0101	0.8 mg/L Result -01 W09-023 248 mg/L 300 mg/L 0 mg/L 0 mg/L 9.1 NTU	
Dissolved Organic Carbon T0158-09 WC Dissolved Organic Carbon Inorganic Chemistry - Physical Alkalinity Carbonate Bicarbonate and Halkalinity as Caldium Carbonate Bicarbonate Carbonate Hydroxide Turbidity T0018-01 W09-023 Turbidity Inorganic Chemistry - Waste Water	09-023 0.3 LOR Hydroxide T0101	0.8 mg/L Result -01 W09-023 248 mg/L 300 mg/L 0 mg/L 0 mg/L 9.1 NTU	
Dissolved Organic Carbon T0158-09 WC Dissolved Organic Carbon Inorganic Chemistry - Physical Alkalinity Carbonate Bicarbonate and Halkalinity as Calcium Carbonate Bicarbonate Carbonate Hydroxide Turbidity T0018-01 W09-023 Turbidity Inorganic Chemistry - Waste Water Suspended Solids T0160-01 W09-023	0.3 LOR Hydroxide T0101 0.1 LOR	0.8 mg/L Result -01 W09-023 246 mg/L 300 mg/L 0 mg/L 9.1 NTU Result	

Corporate Accreditation No. 1115
Chemical and Biological Testing
This document is issued in accordance
with NATA's accreditation requirements.

- Notes

 1. The lest figure of the result value is a significant figure.

 2. Samples are analysed as received.

 3. If determination of the component is not covered by NATA Accreditation.

 4. *Indicates result is out of specification according to the reference Guideline. Refer to Report house.

 5. *Indicates incident have been recorded against the sample. Refer to Report footer.

 6. & Indicates in results have changed since the Inst Issued report.

 7. The Limit of Reporting (LOR) is the lowest concentration of analyte which is reported at the AWQC and is based on the LOQ counded up to a more results used value. The Limit of Quantification (LOQ) is the lowest concentration of analyte for which quantificative results may be obtained within a specified degree of confidence.

 Page 17 of 49.

 **REMITTED OF THE PROPERTY OF ACCESSION OF Components of the Concentration of Page 17 of 49.

A097 6 E333 #592 #574 B

Private Mail Eng 3 Hoogson Road Fer 1916 650 966 Entertet www.nequ.com.mis Sellsbury BA 5165 Borton 64 8910 Flor: 61 3 8559 8220 Hinelit www.skew.ness.com.ou

Water Quality Centre

FINAL REPORT: 36182

Analytical Results

Customer Sample Description Sampling Point Sampled Date Sample Received Date Sample ID Status

Collection Type

15 hours 93309-DWLBC - Lock 6 Production Bore Unit Number 7030-710 26/04/2008 12:00:00AM 28/04/2008 11:02:33AM

Endorsed Customer Collected

Iron Bacteria		AND DESCRIPTION OF THE PERSON NAMED IN	
	- Heterotrophic T460-01	WMZ-500	
Iron Bacteria - He		10	<10 /mL
Iron Bacteria	- Heterotrophic T460-05	WMZ-500	
Iron Bacteria - Mi	croscopic examination		Microscopical examination of the sample did not detect from associated microorganisms
norganic Che	mistry - Metals	LOR	Result
Calcium TIC-0	001 W09-023		
Calcium		0.1	581 mg/L
Iron - Soluble	TIC-004 W09-023		
Iran - Soluble		0.005	1.816 mg/L
Iron - Total TI	C-004 W09-023		
Iron - Total		0.005	1.853 mg/L
Magnesium T	IC-001 W09-023		
Magnesium		0.3	1370 mg/L
-	Soluble TIC-004 W09-02	3	
Manganese - Sol		0.001	0.030 mg/L
Manganese -	Total TIC-004 W09-023		
Manganese - Tot	tal	0.001	0.030 mg/L
Potassium TI	C-001 W09-023		
Potassium		1.0	159 mg/L
Sodium Adso	orption Ratio W09-023		
	on Ratio - Calculation		58.9
Sodium TIC-0	01 W09-023		
Sodium		0.5	11400 mg/L
Sulphur TIC-0	001 W09-023		
Sulphate		1.5	6210 mg/L
Total Hardnes	ss as CaCO3 W09-023		
Total Hardness a	is CaCO3	2.0	7090 mg/L
Inorganic Che	mistry - Nutrients	LOR	Result
Ammonia as	N T0100-01 W09-023		
Ammonia as N		0.005	0.219 mg/L
Chloride T010	04-02 W09-023		
Chloride		4.0	18100 mg/L
	Corporate Accreditation No.1115		Notes
	Chemical and Biological Testing This document is issued in accordance		The last figure of the result value is a significant figure. Samples are analysed as received.
	with NATA's accreditation requirements.		# determination of the component is not covered by NATA Accreditation.
			 indicates result is out of specification according to the reference Guideline. Refer to Report footer.
A. C.			 indicates incident have been recorded against the sample. Refer to Report footer. & Indicates the results have changed since the last issued report.
AGCMEDITATION			The Limit of Reporting (LDR) is the lowest concentration of analyse which is reported at the AWQC and its based on the LOQ rounded up to a more readily used value. The Limit of Quantifation (LDQ) is the lowest concentration of analyse for which quantifative results may be obtained within a specified degree of confidence. Page 18 of 49

A667 623363925913

Page 18 of 49
A positioness with of the fourth Assertifical Water Corporation

Provide Mail Blag 3 Hodgson Rhad Fer 1908 ESS 965 Enfected: www.awqu.com.doi 3986bary BA 5103 Barton BA 8910 For: 61 8 8559 0220 Email: www.dish.com.ou

Quality Centre

FINAL REPORT: 36182

Analytical Results				
Customer Sample Description Sampling Point Sampled Date Sample Received Date Semple ID Status Collection Type	26/04/2008 28/04/2008 *2008-001- Endorsed	93309-DWLBC - Lock 6 Production Bore Unit Number 7030-710 26/04/2008 12:00:00AM 28/04/2008 11:02:33AM *2008-001-2649		
Fluoride W09-023				
Fluoride	0.10	1.9 mg/L		
Nitrate + Nitrite as N T0161-01 W09-02	3			
Nitrate + Nitrite as N	0.005	<0.005 mg/L		
Nitrogen - Total W09-023				
Nitrogen - Total	0.05	0.22 mg/L		
Phosphorus - Filterable Reactive as P	T0108-01 W			
Phosphorus - Filterable Reactive as P	0.005	0.053 mg/L		
Phosphorus - Tetal T0109-01 W09-023				
Phosphorus - Total	0.005	0.062 mg/L		
TKN as N T0112-01 W09-023				
TKN as Nitrogen	0.05	0.19 mg/L		
Organic Chemistry	LOR	Result		
Dissolved Organic Carbon T0158-09 V	V09-023			
Dissolved Organic Carbon	0.3	0.8 mg/L		
Inorganic Chemistry - Physical	LOR	Result		
Alkalinity Carbonate Bicarbonate and	Hydroxide	T0101-01 W09-023		
Alkalinity as Calcium Carbonate		246 mg/L		
Bicarbonate		300 mg/L		
Carbonate		0 mg/L		
Hydroxide		0 mg/L		
Turbidity T0018-01 W09-023				
Turbidity	0.1	5.5 NTU		
Inorganic Chemistry - Waste Water	LOR	Result		
Suspended Solids T0160-01 W09-023				
Suspended Solids	1.0	7 mg/L		
Volatile Suspended Solids W09-023				
Volatile Suspended Solids	1	2 mg/L		

Corporate Accreditation No.1115
Chemical and Biological Testing
This document is Issued in accordance
with NATA's accreditation requirements.

- Notes

 1. The limit figure of the result value is a significent figure.

 2. Samples are analysed as received.

 3. 8 determination of the component is not covered by NATA Accreditation.

 4. * Indicates result is out of specification according to the reference Guideline. Refer to Report Booter.

 5. * Indicates incident have been recorded against the sample. Refer to Report footer.

 5. * Indicates the results have changed since the list issued report.

 7. The Limit of Reporting (LOR) is the lowest concentration of analyte which is reported at the AWCC and is based on the LOQ rounded up to a more readily used value. The Unit of Quantitation (LOQ) is the lowest concentration of analyte for which quantitative results may be obtained within a specified degree of confidence.

Page 19 of 49
A DESCRIPTION OF THE BUILD ALERY FORM WHERE COMPANY

Pyryusu stall Bag 3 Hodgyon Rooki Far 1908 BIO 965 Enfanret: www.cavqu.nnn.nn Skilsbury BA 9108 Biother Ski 8110 Flor: \$5 8 E659 0220 Email: www.cavqu.nnn.nn

FINAL REPORT: 36182

Analytical Results

Customer Sample Description Sampling Point Sampled Date

Sample Date Sample ID Status Collection Type

20 Nour 5 93309-DWLBC - Lock 6 Production Bore Unit Number 7030-710 26/04/2008 12:00:00AM 28/04/2008 11:02:59AM *2008-001-2650

Endorsed Customer Collected

Bacteriology	LOR	Result
Iron Bacteria - Heterotrophic T460-	01 WMZ-500	
Iron Bacteria - Heterotrophic	10	<10 /mL
Iron Bacteria - Heterotrophic T460-	05 WMZ-500	
Iron Dacteria - Microscopic examination		Microscopical examination of the sample did not detect iron associated microorganisms
Inorganic Chemistry - Metals	LOR	Result
Calcium TIC-001 W09-023		
Calcium	0.1	589 mg/L
Iron - Soluble TIC-004 W09-023		
Iron - Soluble	0.005	1.777 mg/L
Iron - Total TIC-004 W09-023		
Iron - Total	0.005	1.849 mg/L
Magnesium TIC-001 W09-023		
Magnesium	0.3	1390 mg/L
Manganese - Soluble TIC-004 W09-	023	
Manganese - Soluble	0.001	0.031 mg/L
Manganese - Total TIC-004 W09-02	3	
Manganese - Total	0.001	0.031 mg/L
Potassium TIC-001 W09-023		
Potassium	1.0	161 mg/L
Sodium Adsorption Ratio W09-023	3	
Sodium Adsorption Ratio - Calculation		58.5
Sodium TIC-001 W09-023		
Sodium	0.5	11400 mg/L
Sulphur TIC-001 W09-023		
Sulphate	1.5	6270 mg/L
Total Hardness as CaCO3 W09-023	3	
Total Hardness as CaCO3	2.0	7190 mg/L
Inorganic Chemistry - Nutrients	LOR	Result
Ammonia as N T0100-01 W09-023		
Ammonia as N	0.005	0.218 mg/L
Chloride T0104-02 W09-023		V100000070700
Chloride	4.0	18100 mg/L
Corporate Accreditation No.1115		Notes 5. The last force of the result union is a significant force.
Chemical and Biological Testing This document is leaved in accordance		 The last figure of the result value is a significant figure. Samples are analysed as received.
NATA With NATA's accreditation requirement	bi.	 3. 3 determination of the component is not covered by NATA Accreditation. 4. * Indicates result is cut of specification according to the reference Guideline. Refer
		to Report Socier. 5. * Indicates incident have been recorded against the sample. Refer to Report Socier.
WORLD RECOVERED ACCHEDITATION		6. & Indicates the results have changed since the last issued report. 7. The Unit of Reporting (LOR) is the lowest oncestration of analyte which is reported at the AWGC and is based on the LOR counted up to a more readily used value. The Unit of Quantitation (LOQ) is the lowest concentration of analyte for which quantitative results may be obtained within a specified degree of confidence.
640 emestains		Pege 20 of 48 A management with of the Scraft Assert Series Company Series

£7V25V26V25V74

A positions only of the Easth Australian Water Corporation

≯rivuto Mali €lag 3 \$alishciry BA \$103

Hudgsun Koolf Ter 1998-883 944 Inferred: www.davga.com.du Bolivie Sk H110 Fer: 61 8 H250 H250 Illneii: away@sowaler.com.uu

Water Quality Centre

FINAL REPORT: 36182

Analytical Results			
Customer Sample Description Sampling Point Sampled Date Sample Received Date Sample ID Status Collection Type	26/04/2008 28/04/2008 *2008-001- Endorsed	93309-DWLBC - Lock 6 Production Bore Unit Number 7030-710 26/04/2008 12:00:00AM 28/04/2008 11:02:59AM *2008-001-2650	
Fluoride W09-023	0.40	10	
Fluoride	0.10	1.9 mg/L	
Nitrate + Nitrite as N T0161-01 W09-02	0.005	co one mall	
Nitrate + Nitrite as N	0.005	<0.005 mg/L	
Nitrogen - Total W09-023 Nitrogen - Total	0.05	0.22 mg/L	
Phosphorus - Filterable Reactive as P Phosphorus - Filterable Reactive as P	0.005	0.054 mg/L	
Phosphorus - Total T0109-01 W09-02		0.004 mg/c	
Phosphorus - Total 10109-01 4409-02.	0.005	0.067 mg/L	
TKN as N T0112-01 W09-023	0.000	over user	
TKN as Nitrogen	0.05	0.16 mg/L	
Organic Chemistry	LOR	Result	
Dissolved Organic Carbon T0158-09	W09-023		
Dissolved Organic Carbon	0.3	0.7 mg/L	
Inorganic Chemistry - Physical	LOR	Result	
Alkalinity Carbonate Bicarbonate and	d Hydroxide	T0101-01 W09-023	
Alkalinity as Calcium Carbonate		246 mg/L	
Bicarbonate		300 mg/L	
Carbonate		0 mg/L	
Hydroxide		0 mg/L	
Turbidity T0018-01 W09-023			
Turbidity	0.1	6.0 NTU	
Inorganic Chemistry - Waste Water	LOR	Result	
Suspended Solids T0160-01 W09-023			
Suspended Solids	1.0	9 mg/L	

Corporate Accreditation No.1115
Chemical and Biological Testing
This document is issued in accordance
with NATA's accreditation requirements.

Volatile Suspended Solids W09-023

Volatile Suspended Solids

2 mg/L

1

- Notes

 1. The livit figure of the result value is a significent figure.

 2. Samples are analysed as received.

 3. If determination of the component is not covered by NATA Accreditation.

 4. *Indicates result is out of specification according to the reference Guideline. Refer to Report feater.

 5. *Indicates inclident have been recorded against the sample. Refer to Report footer.

 6. & Indicates the results have changed since the leat issued report.

 7. The Limit of Reporting (LOR) is the lowest concession of analyte which is reported at the AWQC and is based on the LOQ rounded up to a more resultly used value. The Limit of Quantitation (LOQ) is the lowest concession of analyte for which quantitative results may be obtained within a specified degree of confidence.

 Page 21 of 49

Afiri 63336325043

Private Mail Bing 3 Hoogson Road For 1996 653 365 Internet www.componensis Sullisbury BA 5165 Borror 64 8110 Fox: 61 3 855 W20 Illimetic compagnition and so

FINAL REPORT: 36182

Analytical Results

Customer Sample Description Sampling Point Sampled Date Sample Received Date Sample ID

Status Collection Type

30 hours 93309-DWLBC - Lock 6 Production Bore Unit Number 7030-710 26/04/2008 12:00:00AM 28/04/2008 11:02:48AM *2008-001-2651

Endorsed Customer Collected

Bacteriology	LOR	Result
Iron Bacteria - Heterotrophic T460-0	1 WMZ-500	
Iron Bacteria - Heterotrophic	10	<10 /mL
Iron Bacteria - Heterotrophic T460-0	5 WMZ-500	
Iron Beateria - Microscopio oxamination		Microscopical examination of the sample did not detect inco associated microorganisms
Inorganic Chemistry - Metals	LOR	Result
Calcium TIC-001 W09-023		
Calcium	0.1	578 mg/L
Iron - Soluble TIC-004 W09-023		
Iron - Soluble	0.005	1.776 mg/L
Iron - Total TIC-004 W09-023		
Iron - Total	0.005	1.859 mg/L
Magnesium TIC-001 W09-023		
Magnesium	0.3	1360 mg/L
Manganese - Soluble TIC-004 W09-0		
Manganese - Soluble	0.001	0.032 mg/L
Manganese - Total TIC-004 W09-023		
Manganese - Total	0.001	0.032 mg/L
Potassium TIC-001 W09-023	0.001	0.000 11.000
Potassium	1.0	159 mg/L
Sodium Adsorption Ratio W09-023	1.0	144 1194
Sodium Adsorption Ratio - Calculation		58.6
Sodium TIC-001 W09-023		00.0
Sodium	0.5	11300 mg/L
	0.5	11300 mg/c
Sulphur TIC-001 W09-023	1.5	6180 mg/L
Sulphate		orso rigit
Total Hardness as CaCO3 W09-023		7040 mg II
Total Hardness as CaCO3	2.0	7040 mg/L
Inorganic Chemistry - Nutrients	LOR	Result
Ammonia as N T0100-01 W09-023		
Ammonia as N	0.005	0.222 mg/L
Chloride T0104-02 W09-023		
Chloride	4.0	17000 mg/L
M MINAU	4.0	
Corporate Accreditation No.1115 Chemical and Biological Testing This document is issued in accordance with NATA's accreditation regularments states recovered ACCHEMILATION		Notes 1. The limit figure of the result value is a significent figure. 2. Samples are analysed as received. 3. If determination of the component is not covered by NATA Accreditation. 4. Indicates result is out of specification according to the reference Guideline. Refer to Report footer. 5. Indicates includent have been recorded against the sample. Refer to Report footer. 6. Indicates the awaits have changed since the last issued report. 7. The Limit of Reporting (LOR) is the lowest concentration of analyte which is reported of the AWQC and is based on the LOQ counted up to a more readily used value. The Limit of Quantitation (LOQ) is the lowest concentration of analyte for which quantitative results may be obtained within a specified degree of confidence.
		Page 22 of 49

Privow Mail Bag 3 Sellabury BA \$503

Hodgson Road For 1999 993 Interest wave,maga.som.au Berlium SA 8930 For 61 3 9259 9220 Innelt: awap@www.com.eu

FINAL REPORT: 36182

Analytical Results			
Customer Sample Description Sampling Point Sampled Date Sample Received Date Sample ID Status Collection Type	30 93309-DWLBC - Lock 6 Production Bore Unit Number 7030-710 26/04/2008 12:00:00AM 26/04/2008 11:02:48AM *2008-001-2651 Endorsed Customer Collected		
Fluoride W09-023			
Fluoride	0.10	1.9 mg/L	
Nitrate + Nitrite as N T0161-01 W09-02	:3		
Nitrate + Nitrite as N	0.005	<0.005 mg/L	
Nitrogen - Total W09-023			
Nitrogen - Total	0.05	0.22 mg/L	
Phosphorus - Filterable Reactive as P	T0108-01 W	V09-023	
Phosphorus - Filterable Reactive as P	0.005	0.044 mg/L	
Phosphorus - Total T0109-01 W09-023	3		
Phosphorus - Total	0.005	0.058 mg/L	
TKN as N T0112-01 W09-023			
TICN as Nitrogen	0.05	0.22 mg/L	
Organic Chemistry	LOR	Result	
Dissolved Organic Carbon T0158-09 V	N09-023		
Dissolved Organic Carbon	0.3	0.8 mg/L	
		- · · ·	
Inorganic Chemistry - Physical	LOR	Result	
Alkalinity Carbonate Bicarbonate and	d Hydroxide	T0101-01 W09-023	
Alkalinity as Calcium Carbonate		246 mg/L	
Bicarbonate		300 mg/L	
Carbonate		0 mg/L	
Hydroxide		0 mg/L	
Turbidity T0018-01 W09-023			
Turbidity	0.1	6.7 NTU	
Inorganic Chemistry - Waste Water	LOR	Result	
Suspended Solids T0160-01 W09-023			

Suspended Solids

Volatile Suspended Solids

Corporate Accreditation No.1115 Chemical and Biological Testing This document is issued in accordance with NATA's accreditation requirements.

Volatile Suspended Solids W09-023

9 mg/L

2 mg/L

1.0

1

- Notes

 1. The last figure of the result value is a significant figure.

 2. Sergeles are analysed as received.

 3. Petersmission of the component is not covered by NATA Accreditation.

 4. Indicates result is out of specification according to the reference Guideline. Refer to Report Floster.

 5. Indicates incident have been recorded against the sample. Refer to Report footer.

 6. Indicates the result have changed since the last issued report.

 7. The Limit of Reporting (LOR) is the lowest concentration of analyse which is reported at the AWOC and is based on the LOQ rounded up to a more readily used value. The Limit of Quantitation (LOQ) is the lowest concentration of analyse for which quantitative results may be obtained within a specified degree of confidence.

 Page 20 of 49

A888 8/336325019

Page 23 of 49
A DESCRIPTION OF HE SHEET ASSESSED WILLIAM COMMERCENCY.

Private Maii Bag 3 Salishery BA 5163

Hougyon Road Ser 1908 660 965 Enferreit www.corpumences Borius 68 5110 For 61 5 559 6220 Emair compligativation com us

FINAL REPORT: 36182

Analytical Results

Customer Sample Description Sampling Point Sampled Date Sample Received Date

Sample ID

Status Collection Type

35 hours 93309-DWLBC - Lock 6 Production Bore Unit Number 7030-710 26/04/2008 12:00:00AM 28/04/2008 11:03:03AM *2008-001-2652 Endorsed Customer Collected

Bacteriology	LOR	Result
Iron Bacteria - Heterotrophic T460-0	1 WMZ-500	
Iron Bacteria - Heterotrophic	10	<10 /mL
Iron Bacteria - Heterotrophic T460-0	5 WMZ-500	
Iron Bacteria - Microscopic examination		Microscopical examination of the sample did not detect iron associated microorganisms
Inorganic Chemistry - Metals	LOR	Result
Calcium TIC-001 W09-023		
Calcium	0.1	585 mg/L
Iron - Soluble TIC-004 W09-023		
Iron - Soluble	0.005	1.789 mg/L
Iron - Total TIC-004 W09-023		
Iron - Lotal	0.005	1.812 mg/L
Magnesium TIC-001 W09-023		3000000 7000
Magnesium	0.3	1370 mg/L
Manganese - Soluble TIC-004 W09-	023	
Manganese - Soluble	0.001	0.033 mg/L
Manganese - Total TIC-004 W09-023	3	
Manganese - Total	0.001	0.032 mg/L
Potassium TIC-001 W09-023	0.00	5.00a 11gra
Potassium	1.0	161 mg/L
Sodium Adsorption Ratio W09-023		
Sodium Adsorption Ratio - Calculation		57.8
Sodium TIC-001 W09-023		
Sodium	0.5	11200 mg/L
Sulphur TIC-001 W09-023	0.5	These right
Sulphate	1.5	6210 mg/L
Total Hardness as CaCO3 W09-023		ozio ingic
Total Hardness as CaCO3 W05-023	2.0	7100 mg/L
rotal narchess as CaCC3	2.0	7 too nigre
Inorganic Chemistry - Nutrients	LOR	Result
Ammonia as N T0100-01 W09-023		
Ammonia as N	0.005	0.221 mg/L
Chloride T0104-02 W09-023		
Chloride	4.0	18400 mg/L
Corporate Assreditation No.1115		Notes
Chemical and Biological Testing This document is issued in accordance		 The last figure of the result value is a significant figure. Samples are analysed as received.
NATA Wit NATA's accreditation requirements		3. 8 determination of the component is not covered by NATA Accreditation.
		 A indicates result is out of specification according to the reference Guideline. Refer to Report footer.
W//		 indicates incident have been recorded against the sample. Refer to Report footer. 4 indicates the results have changed since the last issued report.
MOTHED PRODUCED AND CHECKER THOM		7. The Limit of Reporting (LOR) is the lowest concentration of analyse which is reported in the AWQC and is based on the LOB rounded up to a more readily used value. The Limit of Quantitation (LOQ) is the lowest concentration of analyse for which quantitative results may be obtained within a specified degree of confidence.
A68 63936928013		Page 24 of 49 A business and of the South Assers For Vistor Corporation

A business with of the South Asstroffen Vistor Corporation

Provide Mail Bag 3 Hodgeon Roos Far 1908 ERS 905 Entering www.comput.com.co.
Salisbury BA 9108 Entrus SA 81110 For: \$5 8 ESS 9220 Email: damp@samater.com.co.

FINAL REPORT: 36182

Analytical Results					
Customer Sample Description Sampling Point Sampled Date Sample Received Date Sample ID Status Collection Type	35 93309-DWLBC - Lock 6 Production Bore Unit Number 7030-710 26/04/2008 12:00:00AM 28/04/2008 11:03:03AM *2008-001-2652 Endorsed Customer Collected				
Fluoride W09-023	0.10	1.9 mg/L			
Fluoride		1.9 mgr.			
Nitrate + Nitrite as N T0161-01 W09-02 Nitrate + Nitrite as N	0.005	<0.005 mg/L			
Nitrogen - Total W09-023	0.000	- Cooks mgrs			
Nitrogen - Total	0.05	0.22 mg/L			
Phosphorus - Filterable Reactive as F					
Phosphorus - Filterable Reactive as P	0.005	0.048 mg/L			
Phosphorus - Total T0109-01 W09-02	3	100000,00 2 000			
Phosphorus - Total	0.005	0,062 mg/L			
TKN as N T0112-01 W09-023					
TKN as Nitrogen	0.05	0.19 mg/L			
Organic Chemistry	LOR	Result			
Dissolved Organic Carbon T0158-09	W09-023				
Dissolved Organic Carbon	0.3	0.8 mg/L			
Inorganic Chemistry - Physical	LOR	Result			
Alkalinity Carbonate Bicarbonate and	d Hydroxide	T0101-01 W09-023			
Alkalinity as Calcium Carbonate		246 mg/L			
Bicarbonate		301 mg/L			
Carbonate		0 mg/L			
Hydroxide		0 mg/L			
Turbidity T0018-01 W09-023	2.0				
Turbidity	0.1	7.1 NTU			
Inorganic Chemistry - Waste Water	LOR	Result			
Suspended Solids T0160-01 W09-023					
Suspended Solids	1.0	18 mg/L			

Corporate Accreditation No.1115
Chemical and Biological Testing
This document is lessed in accordance
with NATA's accreditation requirements.

Volatile Suspended Solids W09-023

Volatile Suspended Solids

2 mg/L

1

- Notes

 1. The livst figure of the result value is a significant figure.

 2. Samples are analysed an exampled.

 3. dietermination of the component is not covered by NATA Accreditation.

 4. * indicates result is cut of specification according to the reference Guideline. Refer to Report Soster.

 5. * indicates incident have been recorded against the sample. Refer to Report Soster.

 6. A indicates the results have changed since the last issued report.

 7. The Limit of Reporting (LOR) is the lowest concentration of analyte which is reported at the AWOC and is based on the LOQ rounded up to a more readily used value. The Limit of Quantitation (LOQ) is the lowest concentration of analyte for which quantitative results may be obtained within a specified degree of confidence.

Page 25 of 49 A pusingers well of the Scotth Australian Water Cooperation

Salishury BA 5168

Rodgson Road Ballyer BA 3110

For \$388 660 \$46 Interret wave, mayo, comunic For \$4.8 8569 (KDD Ilmail: awayo@varvater.com or

FINAL REPORT: 36182

Analytical Results

Customer Sample Description

Sampling Point Sampled Date

Sample Received Date Sample ID Status

Collection Type

40 (Nour) 93309-DWLBC - Lock 6 Production Bore Unit Number 7030-710

26/04/2008 12:00:00AM 28/04/2008 11:02:35AM *2008-001-2653 Endorsed Customer Collected

Bacteriology	LOR	Result
Iron Bacteria - Heterotrophic T46	50-01 WMZ-500	
Iron Bacteria - Heterotrophic	10	30 /mL
Iron Bacteria - Heterotrophic T46	60-05 WMZ-500	
Iron Becteria - Microscopio examination		Microscopic associated
	LOD	Doouli

Iron Bacteria - Microscopio examination		Microscopical examination of the sample did not detect iron associated microorganisms
Inorganic Chemistry - Metals	LOR	Result
Calcium TIC-001 W09-023		
Calcium	0.1	575 mg/L
Iron - Soluble TIC-004 W09-023		
Iron - Soluble	0.005	1.851 mg/L
Iron - Total TIC-004 W09-023		
Iron - Total	0.005	1.8/5 mg/L
Magnesium TIC-001 W09-023		
Magnesium	0.3	1350 mg/L
Manganese - Soluble TIC-004 W09-	023	
Manganese - Soluble	0.001	0.033 mg/L
Manganese - Total TIC-004 W09-02:	3	
Manganese - Total	0.001	0.034 mg/L
Potassium TIC-001 W09-023		
Potassium	1.0	158 mg/L
Sodium Adsorption Ratio W09-023		
Sodium Adsorption Ratio - Calculation		58.8
Sodium TIC-001 W09-023		
Sodium	0.5	11300 mg/L
Sulphur TIC-001 W09-023		
Sulphate	1.5	6090 mg/L
Total Hardness as CaCO3 W09-023	3	
Total Hardness as CaCO3	2.0	7000 mg/L
norganic Chemistry - Nutrients	LOR	Result
Ammonia as N T0100-01 W09-023		
Ammonia as N	0.005	0.218 mg/L
Chloride T0104-02 W09-023		

Chloride

Corporate Accreditation No.1115
Chemical and Biological Testing
This document is issued in accordance
with NATA's accreditation requirements.

4.0

17700 mg/L

Notes

1. The lost figure of the result value is a significant figure.

2. Samples are analysed on received.

3. If deternative on of the component is not covered by NATA Accreditation.

4. If indicates result is out of specification according to the reference Guideline. Refer to Report footer.

5. Indicates incident have been recorded against the sample. Refer to Report footer.

6. Indicates the results have changed since the last issued report.

7. The Limit of Reporting (LOR) is the lowest concentration of analyte which is reported at the ANDC and is besed on the LOQ rounded up to a more readily used value. The Limit of Quartitation (LOQ) is the lowest concentration of analyte for which is the concentration of analyte which is a second or the LOQ rounded up to a more readily used value. The Limit of Quartitation (LOQ) is the lowest concentration of analyte for which quantitative results may be obtained within a specified degree of confidence.

Page 25 of 49 A DESCRIPTION OF STREET PAGE STREET COMPANY

ABU 63Y26Y26Y3

Priorite Mail Blag 3 Hedgeun Road Fer 1908 BSS 965 Emeriet www.carquicnen.com
Sallsburg BA 9508 Bellinia Sk 8190 For \$1.8 BSS 0220 Emelt work.darquicnen.com ou

FINAL REPORT: 36182

Analytical Results

Analytical Results			
Customer Sample Description Sampling Point Sampled Date Sample Received Date Sample ID Status Collection Type	40 93309-DWLBC - Lock 6 Production Bore Unit Number 7030-710 26/04/2008 12:00:00AM 28/04/2008 11:02:35AM *2008-001-2653 Endorsed Customer Collected		
Collection Type	- Cusioniei C	Julioved	
Fluoride W09-023			
Fluoride	0.10	1.9 mg/L	
Nitrate + Nitrite as N T0161-01 W09-02	23		
Nitrate + Nitrite as N	0.005	<0.005 mg/L	
Nitrogen - Total W09-023			
Nitrogen - Total	0.05	0.22 mg/L	
Phosphorus - Filterable Reactive as F	70108-01 W	/09-023	
Phosphorus - Filterable Reactive as P	0.005	0.055 mg/L	
Phosphorus - Total T0109-01 W09-02	3		
Phosphorus - Total	0.005	0.066 mg/L	
TKN as N T0112-01 W09-023			
TKN as Nitrogen	0.05	0.16 mg/L	
Organic Chemistry	LOR	Result	
Dissolved Organic Carbon T0158-09	W09-023		
Dissolved Organic Carbon	0.3	0.9 mg/L	
Inorganic Chemistry - Physical	LOR	Result	
Alkalinity Carbonate Bicarbonate and	d Hydroxide	T0101-01 W09-023	
Alkalinity as Calcium Carbonate		246 mg/L	
Bicarbonate		300 mg/L	
Carbonate		0 mg/L	
Hydroxide		0 mg/L	
Turbidity T0018-01 W09-023			
Turbidity	0.1	5.4 NTU	
Inorganic Chemistry - Waste Water	LOR	Result	
Suspended Solids T0160-01 W09-023			
Suspended Solids	1.0	8 mg/L	
Volatile Suspended Solids W09-023			
Volatile Supported Solids	4	2 mail	

Volatile Suspended Solids

Corporate Accreditation No.1115 Chemical and Biological Testing This document is issued in accordance with NATA's accreditation requirements.

2 mg/L

Notes

1. The last figure of the result value is a significant figure.

2. Samples are analysed as received.

3. 8 determination of the component is not overed by NATA Accreditation.

4. * instantes result is out of specification according to the reference Guideline. Refer to Report footer.

5. * ledicates incident have been recorded against the sample. Refer to Report footer.

6. Indicates the results have changed since the last issued report.

7. The Limit of Reporting (LDR) is the lowest concentration of analyse which is reported at the AWQC and is based on the LDQ rounded up to a more readily used value. The LMR of Quarritation (LDQ) is the lowest concentration of analyse for which equantizative results may be obtained within a specified degree of confidence.

Page 27 of 49

ASKI 6233630:5012

Page 27 of 49
A maximum with of the finally Australian Visus Corporation

Privow Mail Bag 3 Sellabury BA \$598

Hodgsun Road Yer 1998 683 366 Internet wave.com.co. Ballos SA 8910 Fax: \$1.3 8554 8250 Illnett: exeq@www.com.co.

Analytical Results

Customer Sample Description Sampling Point Sampled Date Sample Received Date Sample ID

Status Collection Type

45 hour5 93309-DWLBC - Lock 6 Production Bore Unit Number /030-710 26/04/2008 12:00:00AM 28/04/2008 11:02:46AM

*2008-001-2654

Endorsed Customer Collected

Bacteriology	LOR	Result		
Iron Bacteria - Heterotrophic T460-01	WMZ-500			
Iron Bacteria - Heterotrophic	10	<10 /mL		
Iron Bacteria - Heterotrophic T460-05	WMZ-500			
Iron Besteria - Microscopic examination		Microscopical examination of the sample did not detect iron associated microorganisms		
Inorganic Chemistry - Metals	LOR	Result		
Calcium TIC-001 W09-023				
Calcium	0.1	586 mg/L		
Iron - Soluble TIC-004 W09-023				
Iron - Soluble	0.005	1.862 mg/L		
Iron - Total TIC-004 W09-023				
Iron - Total	0.005	1.900 mg/L		
Magnesium TIC-001 W09-023				
Magnesium	0.3	1370 mg/L		
Manganese - Soluble TIC-004 W09-023	3			
Manganese - Soluble	0.001	0.034 mg/L		
Manganese - Total TIC-004 W09-023				
Manganese - Total	0.001	0.034 mg/L		
Potassium TIC-001 W09-023				
Potassium	1.0	160 mg/L		
Sodium Adsorption Ratio W09-023				
Sodium Adsorption Ratio - Calculation		57.3		
Sodium TIC-001 W09-023				
Sodium	0.5	11100 mg/L		
Sulphur TIC-001 W09-023				
Sulphate	1.5	6240 mg/L		
Total Hardness as CaCO3 W09-023				
Total Hardness as CaCO3	2.0	7100 mg/L		
Inorganic Chemistry - Nutrients	LOR	Result		
	2011	1100411		
Ammonia as N T0100-01 W09-023	0.006	0.005 mail		
Ammoria as N	0.005	0.225 mg/L		
Chloride T0104-02 W09-023	4.0	19400. mail		
Chloride	4.0	18400 mg/L		
Corporate Accreditation No.1115 Chemical and Biological Testing This document is least of asportance with NATA's pooreditation requirements. 2. Samples are analysed as received. 3. 8 detarmination of the component is not covered by NATA Accreditation. 4. * Indicates results have been recorded against the sample. Refer to Report for B. 6. Indicates the results have changed since the last issued report. 7. The Limit of Reporting (LOR) is the lowest concentration of analyse which is reported at the AMEC and is based on the LOR counted up to more receiving value. The Limit of Quantitation (LOR) is the lowest concentration of analyse which is reported at the AMEC and is based on the LOR counted up to more receiving value. The Limit of Quantitative results have within a specification (LOR) is the lowest concentration of analyse which is reported at the AMEC and is based on the LOR counted up to a more receiving value. The Limit of Quantitative results may be obtained within a specification depend or confidence.				
A 565 62Y26X25X42		Page 28 of 49 A maximum well of the South Assers Son Vitorar Corporation		

April 62736328013

A pasiness will of the South Australian Vistor Corporation

Private Mail Eag 3 Hooppon Scad Selectory BA 9195 Screw St 8190

Tur 1900 600 966 - Enfenteit www.compc.com.au Fair 61 8 8059 0000 - Email: compgiverwise com.eu

Quality Centre

FINAL REPORT: 36182

Analytical Results				
Customer Sample Description Sampling Point Sampled Date Sample Received Date Sample ID Status Collection Type	45 93309-DWLBC - Lock 6 Production Bore Unit Number 7030-710 26/04/2008 12:00:00AM 28/04/2008 11:02:46AM *2008-001-2654 Endorsed Customer Collected			
Fluoride W09-023				
Fluoride	0.10	1.9 mg/L		
Nitrate + Nitrite as N T0161-01 W09-02	3			
Nitrate + Nitrite as N	0.005	<0.005 mg/L		
Nitrogen - Total W09-023				
Nitrogen - Total	0.05	0.22 mg/L		
Phosphorus - Filterable Reactive as P	T0108-01 W	/09-023		
Phosphorus - Filterable Reactive as P	0.005	0.053 mg/L		
Phosphorus - Total T0109-01 W09-023				
Phosphorus - Total	0.005	0.068 mg/L		
TKN as N T0112-01 W09-023				
TKN as Nitrogen	0.05	0.15 mg/L		
Organic Chemistry	LOR	Result		
Dissolved Organic Carbon T0158-09 V	V09-023			
Dissolved Organic Carbon	0.3	0.8 mg/L		
Inorganic Chemistry - Physical	LOR	Result		
Alkalinity Carbonate Bicarbonate and	Hydroxide	T0101-01 W09-023		
Alkalinity as Calcium Carbonate		246 mg/L		
Bicarbonate		300 mg/L		
Carbonate		0 mg/L		
Hydroxide		D mg/L		
Turbidity T0018-01 W09-023		1828		
Turbidity	0.1	5.3 NTU		
Inorganic Chemistry - Waste Water	LOR	Result		
Suspended Solids T0160-01 W09-023				
Suspended Solids	1.0	10 mg/L		
Volatile Suspended Solids W09-023				
Volatile Suspended Solids	1	3 mg/L		

Corporate Accreditation No.1115 Chemical and Biological Testing This document is issued in accordance with NATA's accreditation requirements.

Notes

1. The last figure of the result value is a significant figure.

2. Samples are analysed as received.

3. Federalmistion of the component is not covered by NATA Accreditation.

4. *Indicates result is out of specification according to the reference Guideline. Refer to Report Footer.

5. *Indicates insident have been recorded against the sample. Refer to Report footer.

6. *Indicates the results have changed since the lest issued report.

7. The Limit of Reporting (E.OR) is the lowest concentration of analyse which is respond at the AWICC and is based on the LOR cruelled up to more readily used value. The Limit of Quartificition (LOR) is the lowest concentration of analyse for which quartifative results may be obtained within a specified degree of confidence.

A processes well of the South Assertation Water Corporation

ADME SENS SWEAT

APPENDIX 4: PSD AND MFI RESULTS

N.B: The name at the bottom of the graph represents the time and aquifer from which sampling was undertaken.

Result Analysis Report

SOP Name: Sample Name: Measured: Friday, 2 May 2008 10:27:29 AM Averaged Result19 Sample Source & type: Analysed: Measured by: Friday, 2 May 2008 10:27:31 AM Supplier bar539 Result Source: Sample bulk lot ref: Averaged Particle Name: Accessory Name: Analysis model: Sensitivity: Kaolinite high Hydro 2000G (A) General purpose Normal Obscuration: Particle RI: Absorption: Size range: to 2000.000 um 1.570 0.1 0.020 0.81 Dispersant Name: Dispersant RI: Weighted Residual: Result Emulation: Water 1.330 8.896 Uniformity: Result units: Concentration: Span: Volume Specific Surface Area: Surface Weighted Mean D[3,2]: Vol. Weighted Mean D[4,3]: d(0.1): 1.294 d(0.5): 8.574 d(0.9): 175.282 Particle Size Distribution 7 6 5 /olume (%) 4 3 2 8.01 100 1000 3000 Particle Size (µm) Averaged Result19, Friday, 2 May 2008 10:27:29 AM Size (µm) Volume in % 0.105 Size (µm) Volume in % 1258.925 Size (µm) Volume In % 11.482 0.00 13,183 138.038 0.00 0.00 1.29 1.30 5.93 0.013 0.138 1.445 15,136 158,488 1659.582 0.00 5.87 1,660 0.015 0.158 17.378 181,970 1905.461 0.00 0.00 1.77 0.60 4.75 0.00 0.017 0.182 1.905 19.953 208.930 2187,762 2.75 2.188 2511.888 0.020 0.208 22,909 239.883 0.00 0.00 2.51 0.07 0.95 0.00 275.423 2884,032 0.02 0.00 0.03 2.90 0.04 0.00 0.028 0.275 2.884 30,200 316.228 3311.311 0.19 0:04 0.00 0.00 363.078 0.030 0.316 3.311 34.574 3601.894 0.00 0.45 3.58 0.10 0.00 0.00 0.035 0.363 3.802 39.611 415,869 4365 198 0.00 0.00 0.22 0.040 0.417 5011.872 4,365 45,709 478.630 0.00 0.83 3.90 0.36 0.00 0.00 0.046 0.479 5.012 52,481 549.541 5754.399 0.96 3.86 0.00 0.00 0.00 0.56 0.052 0.550 5,754 60.256 630.850 6606.934 000 1.05 3.69 0.89 0.00 0.00 6.607 0.00 1.09 3.39 0.00 0.00 1.64 0.069 0.724 7.586 79.433 831.764 8709.636 954.993 0.079 8,710 91.201 10000.000 0.832 0.00 2.57 3.57 0.00 0.001 0.056 10,000 104.713 1096,476 4.50 11,482 120,226 1258,925

Operator notes: Average of 19 measurements from dwlbc mon1.mea

Malvern Instruments Ltd. Mastersizer 2000 Ver. 5.22 File name: delftic monft mea Malvern, UK. Serial Number : MAL101764 Record Number : 24

Sample Name:

Averaged Result7

Sample Source & type:

Supplier

Sample bulk lot ref:

SOP Name:

Measured by: bar539

Result Source:

Friday, 2 May 2008 10:56:32 AM

Analysed:

Friday, 2 May 2008 10:56:33 AM

Averaged Accessory Name: Hydro 2000G (A) Particle Name:

Kaolinite high Particle RI: Absorption: 1.570 0.1

Dispersant Name: 1.330 Water

Dispersant RI:

Span:

1.601

Analysis model: General purpose Size range: 0.020

to 2000.000 um

Weighted Residual: 13.098 %

Normal Obscuration: Result Emulation:

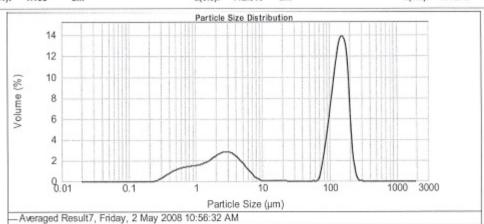
Sensitivity:

Result units:

Concentration: 0.0005

Specific Surface Area: m²/g 1.61

Surface Weighted Mean D[3,2]: 3.733


Vol. Weighted Mean D[4,3]:

Volume

92.979

Uniformity: 0.584

d(0.9): 181.240 d(0.5): 112.513 um d(0.1): 1.158

Sze (µm) 0.010 0.011 0.013 0.015 0.017 0.020 0.025 0.030 0.035 0.030 0.035 0.045 0.052 0.000 0.065 0.000 0.065 0.000 0.005	Volume In % 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	Size (µm) 0.120 0.120 0.138 0.158 0.182 0.209 0.240 0.275 0.316 0.417 0.479 0.550 0.631 0.724 0.832 0.955 1.096	Volume in % 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	Size(µrr) 1.096 1.299 1.445 1.660 1.066 2.168 2.512 2.664 3.311 3.002 4.305 5.012 5.704 6.607 7.596 8.710 1.0000 11.482	Volume in % 1.45 1.59 1.76 1.99 2.22 2.42 2.53 2.39 2.13 1.77 1.35 0.95 0.95 0.05 0.05	Size (µm) 11.492 13.183 15.136 17.378 19.553 22.909 26.303 30.200 34.674 36.611 45.709 52.481 60.266 60.183 79.433 91.071 10.2265	0.00 0.00 0.00 0.00 0.02 1.20 3.30 5.83	Size (µm), 120/230 130/338 150/409 101/370 208/39/35 275/423 396/228 418/850 478/850 569/85 150/950 569/85 1794/950 569/850 100/859/350 100/859/350 100/859/350 100/859/350 100/859/350 100/859/350 1250/925	11.22 12.99 12.03 7.58 1.59 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Size (um) 1288-925 1445-5440 1690-587 1995-481 21877-88 2384-032 3311-311 3301-884 4365-158 5011-872 575-300 (000-000 000 000 000 000 000 000 000	00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.
--	---	--	---	---	---	---	--	--	---	---	---

Operator notes: Average of 7 measurements from dwlbc mon2.mea

Malvern Instruments Ltd.

Mastersizer 2000 Ver. 5.22 Serial Number: MAL101764 File name: dwbc mon2/mea Record Number: 23

98

Sample Name: Averaged Result20 SOP Name:

Measured:

Friday, 2 May 2008 11:15:05 AM

Sample Source & type: Supplier

Measured by: bar539

Analysed:

Friday, 2 May 2008 11:15:06 AM

Sample bulk lot ref:

Result Source:

Averaged

Analysis model:

General purpose

Sensitivity: Normal

Kaolinite high Particle RI:

Particle Name:

Hydro 2000G (A) Absorption:

Accessory Name:

Size range:

Obscuration:

1.570

0.1

0.020 to 2000.000 um 1.68

Dispersant Name:

Dispersant RI:

Weighted Residual:

Result Emulation:

1.330

4.294

Concentration: 0.0006

Span: 2.263

Uniformity: 0.684

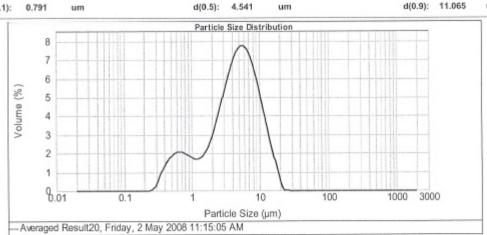
Result units: Volume

Specific Surface Area:

m²/g

Surface Weighted Mean D[3,2]: 2.231

um


Vol. Weighted Mean D[4,3]:

5.380 um

d(0.1):

d(0.9): 11.065

um

Size (µm) Volume 0.010 0.011 0.013 0.015 0.017	0.00 0.11 0.00 0.13 0.00 0.11 0.00 0.11	0.00 88 0.00 88 0.00	Size (µm) Volume In % 1,096 1,53 1,299 1,56 1,445 1,76 1,660 2,15 1,905	Stor (µm) Volume In % 11.482 3.45 13.93 2.56 15.136 1.72 17.378 0.94 19.563 0.99	Size (µm) Volume In % 120 225 0.00 138.056 0.00 158.469 0.00 161.970 0.00 208.930 0.00	Size (µm) Volume in % 1258.905 1445.440 0.00 1659.567 0.00 1905.461 0.00 2187.762 0.00
0.020 0.023 0.026 0.030 0.035 0.040 0.046	0.00 0.2 0.00 0.2 0.00 0.2 0.00 0.3 0.00 0.3 0.00 0.4 0.00 0.4	0 0.00 0.03 75 0.20 16 0.69 13 1.08 17 1.43	2.188 2.59 2.512 4.13 2.884 4.83 3.311 5.69 3.802 6.32 4.365 6.78 5.012 7.00	22 2009 0.20 26 303 0.00 30 200 0.00 34 674 0.00 46 709 0.00 52 401 0.00 50 256	299,883 0.00 275,423 0.00 316,228 0.00 363,078 0.00 416,889 0.00 476,830 0.00 542,541 0.00 600,667	2911.989 0.00 2894.032 0.00 3311.311 0.00 3301.834 0.00 4385.198 0.00 5011.672 0.00 5754.399 0.00
0.052 0.060 0.069 0.079 0.091 0.105	0.00 0.5 0.00 0.7 0.00 0.8 0.00 0.9 0.00 0.9	31 1.84 24 1.82 32 1.70 55 1.59	5.694 6.607 7.586 6.70 6.70 10.000 11.482 6.94 6.94 6.94 6.94 6.94 6.94 6.94 6.94	69.183 0.00 79.433 0.00 91.201 0.00 104.713 0.00 120.226	724.438 0.00 831.764 0.00 954.993 0.00 1096.478 0.00 1258.925	7585,776 0.00 8709,636 0.00 10000,000

Operator notes: Average of 20 measurements from dwlbc mon3.mea

Malvern Instruments Ltd. Malvern, UK

Mastersizer 2000 Ver. 5.22 Serial Number : MAL101764

Record Number: 21

Sample Name: Averaged Result6 SOP Name:

Measured:

Friday, 2 May 2008 11:38:19 AM

Sample Source & type:

Measured by: bar539

Analysed:

Sample bulk lot ref:

Result Source:

Friday, 2 May 2008 11:38:20 AM

Averaged

Particle Name: Kaolinite high Particle RI:

Accessory Name: Hydro 2000G (A) Absorption:

Analysis model: Size range:

Sensitivity: Normal Obscuration:

Off

1.570 Dispersant Name:

Dispersant RI: 1.330

to 2000.000 um 0.020 Weighted Residual:

1.54 Result Emulation:

Water

Span:

Uniformity:

16.427

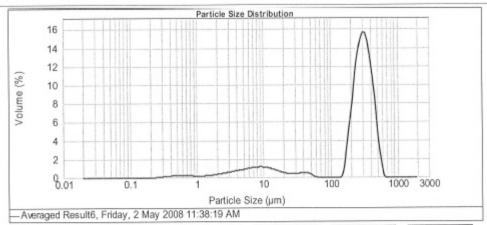
Result units:

Concentration: 0.0045 %Vol

1.514

Surface Weighted Mean D[3,2]:

Vol. Weighted Mean D[4,3]:


Volume

Specific Surface Area: 0.341 m²/g

264.439 um

d(0.5): 280.343 d(0.1): 9.180

d(0.9): 433.630

Size (µm) Volume in % 0.00 0.011 0.00 0.001 0.001 0.00 0.00	Size (µm) Molume In % 0.105 0.00 0.00 0.130 0.00 0.138 0.00 0.158 0.00 0.158 0.00 0.158 0.00 0.275 0.05 0.275 0.05 0.275 0.05 0.11 0.275 0.05 0.11 0.15 0.14 0.17 0.17 0.18 0.18 0.19 0.831 0.19 0.831 0.19 0.831 0.19 0.832 0.15 0.832 0.15 0.835 0.15 0.835 0.15 0.835 0.15 0.835 0.15 0.835 0.15 0.835 0.15 0.835 0.15 0.835 0.15 0.955 0.14 0.955 0.14 0.955 0.14 0.955 0.14 0.955 0.14 0.955 0.14 0.955 0.14 0.955 0.14 0.955 0.14 0.955 0.14 0.955 0.14 0.955 0.14 0.955 0.15 0.955 0.14 0.955 0.14 0.955 0.14 0.955 0.14 0.955 0.14 0.955 0.14 0.955 0.15 0.955 0.14 0.955 0.15 0.955 0.14 0.955 0.14 0.955 0.14 0.955 0.14 0.955 0.15 0.955 0.14 0.955 0.14 0.955 0.14 0.955 0.15 0.955 0.14 0.955 0.15 0.955 0.14 0.955 0.15 0.955 0.15 0.955 0.15 0.955 0.15 0.955 0	Size (um) Motume in %	Size jum) Volume In % 11.492 0.91 13.183 0.79 15.136 0.66 19.953 0.41 25.000 0.34 25.000 0.34 30.200 0.35 34.674 0.41 36.811 0.41 36.799 0.35 52.481 0.37 0.256 69.183 0.00 79.433 0.00 91.201 0.00 120.225 0.00	Size (µm) Volume in % 120 226 0.00 135.05 0.25 135.05 0.25 135.05 0.25 135.05 0.25 135.05 0.25 135.05 0.25 0	Size (pm) Volume In % 1258/925 1445/40 0.00 1699.587 1995.461 0.00 2197.762 0.00 2511.868 0.00 2551.868 0.00 2564.002 3011.311 0.00 3601.994 0.00 4965.1994 0.00 6901.872 0.00 6906.994 0.00 6906.994 0.00 6796.536 0.00 8796.536 0.00
---	--	-------------------------	--	--	--

Operator notes: Average of 6 measurements from dwlbc mon4.mea

Malvem Instruments Ltd. Malvem, UK

Mastersizer 2000 Ver. 5.22 Serial Number : MAL101764

File name: dwbc mon4.mea Record Number: 22

Sample Name: Averaged Result18

Sample Source & type:

Supplier

Sample bulk lot ref:

SOP Name:

Measured by: bar539

Result Source: Averaged

Accessory Name: Hydro 2000G (A)

Absorption:

Dispersant RI:

Friday, 2 May 2008 1:49:20 PM

Analysed:

Friday, 2 May 2008 1:49:21 PM

Particle Name: Kaolinite high

Particle RI: 1.570

0.679

Dispersant Name:

Water

Concentration: 0.0017

Specific Surface Area:

m²/g

Span: 1.861

1.330

Surface Weighted Mean D[3,2]:

Analysis model: General purpose

> Sixe range: to 2000.000 um 0.020

Weighted Residual:

Uniformity:

Vol. Weighted Mean D[4,3]:

222.764 um

3.090 d(0.1):

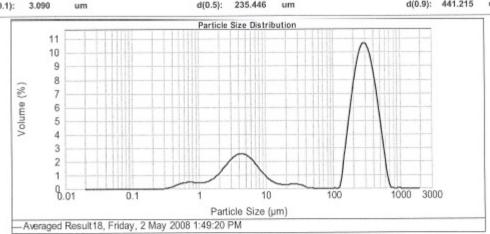
d(0.5): 235.446

d(0.9): 441.215

Sensitivity:

Obscuration:

Result units:


Volume

Result Emulation:

Normal

1.35

Off

Size (µm)	Volume In %	Size (µm)	Volume in %	Size (µm)	Volume In %	Size (µm)	Volume In %	Size (µm)	Volume In %	Size (µm)	Volume In %
0.010 0.011 0.013 0.015 0.017 0.020 0.020 0.030 0.036 0.046 0.052 0.060 0.069 0.079 0.079	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.106 0.120 0.138 0.158 0.1582 0.209 0.240 0.275 0.363 0.417 0.479 0.550 0.651 0.724	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	1,006 1,259 1,445 1,860 1,905 2,100 2,512 2,884 3,311 3,802 4,365 5,012 5,750 6,607 7,506 8,710 10,000	0.41 0.47 0.59 0.79 1.05 1.05 1.88 1.98 2.18 2.29 2.25 2.15 1.92 2.15 1.92 1.91	11.482 13.183 15.136 17.378 18.933 22.909 26.303 30.200 34.674 39.811 45.799 52.451 69.163 79.433 91.201 104.732	0.27 0.25 0.27 0.28 0.24 0.14 0.02 0.00 0.00 0.00	120,226 138,038 158,499 208,930 239,833 275,423 331,023 416,869 478,650 549,647 724,436 851,764 964,933 1026,932	0.001	1258.905 1445.440 1690.5461 2167.762 2511.896 2894.032 3311.331 3301.894 4365.198 5011.672 5754.399 1766.776 6709.636	0.00

Operator notes: Average of 18 measurements from dwfbc mon5.mea

Malyern, UK

Mastersizer 2000 Ver. 5.22 Serial Number : MAL101764

File name: dwbc mon5.mes Record Number: 21

Sample Name: Averaged Result18 SOP Name:

Measured:

Friday, 2 May 2008 2:04:18 PM

Sample Source & type:

Supplier

Measured by: bar539

Analysed:

Friiday, 2 May 2008 2:04:20 PM

Sample bulk lot ref:

Particle Name:

Particle RI:

1.570

Water

Result Source:

Averaged

Accessory Name: Hydro 2000G (A)

Absorption: 0.1

Dispersant RI: 1.330

Analysis model: General purpose Size range:

to 2000.000 um 0.020 Weighted Residual:

Uniformity:

Obscuration: 0.93 Result Emulation:

Sensitivity:

Normal

15.776

Result units:

Volume

Concentration:

0.0013

Specific Surface Area:

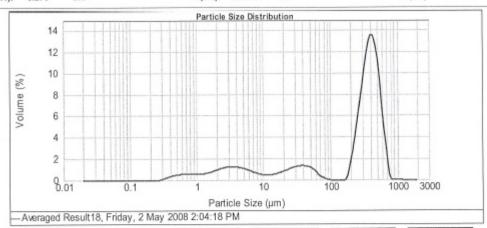
Dispersant Name:

Span:

Surface Weighted Mean D[3,2]:

8.920

0.507


Vol. Weighted Mean D[4,3]: 292.395

d(0.1): 3.270

d(0.5): 328.578

d(0.9): 536.031

um

Size (ym) Volume In	Size (jum) Volume in %	Size (µm) Volume In % 1,096 1,259 0,56 1,445 0,65 1,465 0,63 1,905 2,188 0,93 2,512 1,07 2,894 1,17 2,894 1,17 2,894 1,17 3,802 1,19 4,305 1,09 4,305 4,305 4,305 4,305 4,305 4,305 4,305 4,305 4,305 4,305 4,305	Size (µm) Volume In % 11,492 0.43 12,183 0.47 15,136 0.45 17,376 0.56 19,953 0.80 22,956 0.80 22,956 0.80 28,305 1.16 34,874 1.21 36,811 1.21 36,811 1.20 45,700 1.30 52,481 0.06 60,95 0.47 69,183 0.47 79,433 0.27 91,201 10,000 120,226 0.000 10,000 120,226 0.000 10,000 120,226 0.000 10,000 120,226 0.000 0.	Size (µm) Volume In % 120.226	Size (gm)
-----------------------	--------------------------	--	--	-------------------------------	-----------

Operator notes: Average of 18 measurements from dwlbc mon6.mea

Mastersizer 2000 Ver. 5.22 Sorial Number: MAL101764 File name: dwbc mon8.mea Record Number: 21

Sample Name: Averaged Result19 SOP Name:

Measured:

Friday, 2 May 2008 2:44:19 PM

Sample Source & type:

Measured by: bar539

Analysed:

Result Source: Sample bulk lot ref:

Averaged

Friday, 2 May 2008 2:44:20 PM

Particle Name: Kaolinite high Particle RI:

Accessory Name: Hydro 2000G (A) Absorption:

Analysis model: General purpose Size range:

Sensitivity: Normal Obscuration:

1.570 Dispersant Name:

Dispersant RI:

to 2000.000 um 0.020 Weighted Residual:

0.21 Result Emulation:

Concentration:

1.330

6.872

Water

Span:

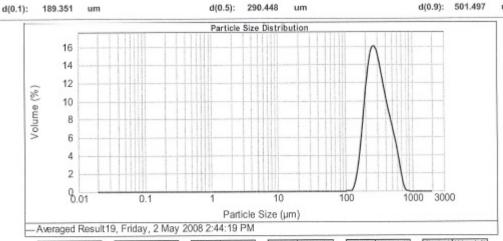
Uniformity:

0.327

Result units:

0.0086

Specific Surface Area: 0.0214 m²/g


1.075 Surface Weighted Mean D[3,2]:

Vol. Weighted Mean D[4,3]:

280.641 um

320.281 um

d(0.9): 501.497

Size (µm) V	siume In %	Size (µm)	Volume In %		Volume In %		Volume Im %		Volume In %		Volume In %
0.010 0.011 0.013 0.015 0.017 0.020 0.023 0.026 0.030 0.036 0.040 0.062 0.062 0.069 0.069	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.106 0.120 0.138 0.162 0.209 0.240 0.275 0.343 0.417 0.479 0.553 0.653 0.724	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	1,090 1,259 1,445 1,866 2,168 2,512 2,884 3,311 3,802 4,365 5,012 5,754 6,607 7,586 8,710	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	11,482 13,183 15,136 17,378 19,953 22,909 26,000 34,674 39,811 45,709 52,461 60,193 79,433 91,201 104,713	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	120,226 138,038 158,493 159,590 208,930 275,423 316,226 478,630 478,630 649,541 600,547 724,436 831,764 94,990 1096,875	0.28 2.09 5.31 9.45 12.91 14.45 13.65 11.66 9.71 7.81 6.08 4.124 0.21 0.00 0.00	1258.925 1445.440 169.937 1905.481 2187.782 2511.886 2884.023 3311.311 3801.894 4365.158 5011.897 5754.399 6606.934 7585.763 9606.934 7585.763 9606.934	000 000 000 000 000 000 000 000 000 00

Operator notes: Average of 19 measurements from dwlbc war1R.mea

Malvem Instruments Ltd. Malvern, UK

Mastersizer 2000 Ver. 5.22 Serial Number : MAL101764

File name: dwbc war1ft.men

103

Sample Name: Averaged Result SOP Name:

Measured:

Friday, 2 May 2008 2:58:53 PM

Sample Source & type:

Measured by: bar539

Accessory Name:

Hydro 2000G (A)

Analysed:

Friday, 2 May 2008 2:58:54 PM

Sample bulk lot ref:

Particle Name:

Kaolinite high

Result Source: Averaged

Analysis model:

Sensitivity: Normal

Particle RI: 1.570

Absorption:

Size range: to 2000.000 um 0.020

Obscuration:

Dispersant Name:

Dispersant RI:

Weighted Residual:

0.22

1.330

7.352

Result Emulation: Off

Water

Span:

Uniformity:

0.428

Result units:

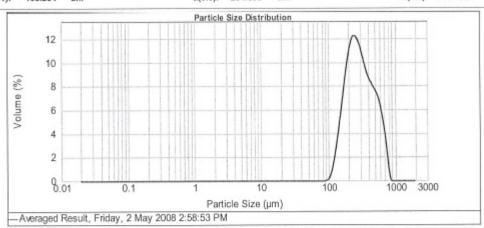
Concentration: 0.0082 %Vol

Surface Weighted Mean D[3,2]:

Vol. Weighted Mean D[4,3]:

Volume

Specific Surface Area: 0.0226


m²/g

265.746 um

327.396 um

d(0.1): 163.204 d(0.5): 284.638

d(0.9): 565.452

Size (µm)	Volume In %	Size (µm)	Volume In %	Size (µm)	Valume In %	Size (µm)	Volume Im %	Size (µm)	Volume In %	Size (µm)	Volume In 9
0.010 0.011 0.013 0.015 0.017 0.020 0.023 0.020 0.035 0.040 0.046 0.046 0.052 0.069 0.069	00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.	0.105 0.120 0.138 0.158 0.192 0.209 0.240 0.275 0.383 0.417 0.479 0.5631 0.724 0.832 0.832	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	1,096 1,259 1,445 1,550 2,188 2,512 2,884 3,311 3,802 4,345 5,012 5,794 6,607 7,586 8,710 10,000 11,482	00.0 00.0 00.0	11,462 13,183 15,136 17,278 19,963 22,909 26,303 30,200 34,674 39,811 45,709 52,491 60,963 79,433 91,201 104,728	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	120,226 138,409 181,970 208,590 239,683 316,226 363,076 416,093 549,541 600,957 724,436 954,993 1956,8	2,95 4,92 7,40 9,80 10,87 10,96 10,15 8,56 7,57 7,33 6,60 5,80 4,14 1,37 0,00 0,00	1298.925 1445.440 1699.55 1905.461 2187.762 2511.866 2504.032 3311.313 3801.834 4005.130 5011.872 5754.389 6906.934 6906.934 7906.936 10000.000	0.0

Operator notes: Average of 20 measurements from dwlbc war2R.mea

Mastersizer 2000 Ver. 5.22 Serial Number : MAI, 101764

File name: dwbc war2R.mee Record Number: 21

Sample Name:

Averaged Result15

Sample Source & type:

Supplior

Sample bulk lot ref:

SOP Name:

Friday, 2 May 2008 2:25:11 PM

Measured by:

bar539

Result Source: Averaged

Accessory Name: Hydro 2000G (A)

Absorption:

Dispersant RI:

Analysed:

Friday, 2 May 2008 2:25:12 PM

Particle Name: Kaolinite high

Particle RI: 1.570

0.0062

Dispersant Name:

Concentration:

Water

1.330 Span:

Surface Weighted Mean D[3,2]:

Analysis model: General purpose 3ize range:

0.020 to 2000.000 um Weighted Residual:

8.340

Uniformity: 0.439

Vol. Weighted Mean D[4,3]:

Specific Surface Area: 0.0226

m²/g

265.174

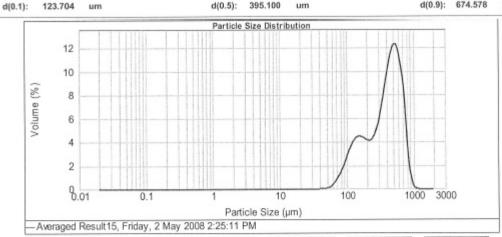
d(0.5): 395.100

d(0.9): 674.578

Sensitivity:

Obscuration:

Result units:


Volume

Result Emulation:

um

Normal

0.16

Size (µm) Volume in %	Size (µm) Volume in %	Size (µm) Volume In %	Size (µm) Volume In %	Size (µm) Volume In %	Size (µm) Volume in %
0.010 0.00 0.011 0.00 0.013 0.00 0.015 0.00 0.015 0.00 0.023 0.00 0.028 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00	0.106 0.00 0.120 0.00 0.136 0.00 0.156 0.00 0.152 0.00 0.240 0.00 0.275 0.00 0.316 0.00 0.316 0.00 0.351 0.00 0.351 0.00 0.351 0.00 0.351 0.00 0.351 0.00 0.351 0.00 0.351 0.00 0.351 0.00 0.351 0.00 0.351 0.00 0.351 0.00 0.351 0.00 0.351 0.00 0.351 0.00 0.351 0.00 0.351 0.00 0.351 0.00 0.351 0.00 0.351 0.00	1,096 0.00 1,259 0.00 1,445 0.00 1,905 0.00 1,905 0.00 2,905 0.00 2,507 0.00 3,311 0.00 3,311 0.00 4,365 0.00 4,365 0.00 5,012 0.00 5,012 0.00 5,014 0.00 6,600 0.00 6,600 0.00 1,482 0.00	11,492 0.00 13,183 0.00 15,136 0.00 17,378 0.00 19,963 0.00 22,999 0.00 30,200 0.00 34,674 0.00 34,674 0.00 52,881 0.19 60,266 0.19 60,266 0.52 79,433 1.03 91,201 1.47 104,713 2.48 104,713 3.28	120.228 3.82 138.649 4.05 158.469 3.06 151.970 3.96 208.930 3.75 208.933 4.17 275.423 6.25 363.978 8.73 416.238 6.25 363.978 10.36 479.541 90.48 630.547 8.58 631.964 4.47 954.993 0.13 1066.995 0.00	1258.955 0.00 1445.440 0.00 1899.557 0.00 1895.461 0.00 1897.762 0.00 2511.869 0.00 2511.869 0.00 3311.311 0.00 3891.894 0.00 4305.194 0.00 6905.994 0.00 6905.994 0.00 6755.796 0.00 6705.656 0.00

Average of 15 measurements from dwlbc war3.mea Operator notes:

Malvern, UK

Mastersizer 2000 Ver. 5.22 Serial Number : MAL101764

File name: dwlbc war3.mea Record Number: 19

APPENDIX 5: MONOMAN SANDS TO WARINA SANDS INJECTION DATA

Test	Date	Start time	Injection Rate (L/s)	Test Duration (mins)
1a	20/6/2008	09:30 AM	6 L/s (first 7 days)	10,098
1b	27/6/2008	09:30 AM	12 L/s (final 3 days)	4,304 (Total 14,402)

(mins)	Head above logger (m)	Injection Head (m)	Injection Rate (L/s)	Comment
	Initial head 16.985			
0	16.916	0.069		
2	20.431	-3.446	6.0	
4	19.811	-2.826		
6	18.708	-1.723		
8	17.640	-0.655		
10	16.537	0.448		
12	16.433	0.552		
14	16.502	0.483		
16	16.502	0.483		
18	16.502	0.483		
20	16.571	0.414		
22	16.571	0.414		
24	16.502	0.483		
26	16.640	0.345		
28	16.640	0.345		

Time

Time (mins)	Head above logger (m)	Injection Head (m)	Injection Rate (L/s)	Comment
64	16.675	0.310	mjootion rato (270)	C 0
66	16.675	0.310		
68	16.675	0.310		
70	16.675	0.310		
72	16.675	0.310		
74	16.675	0.310		
76	16.675	0.310		
78	16.675	0.310		
80	16.675	0.310		
82	16.675	0.310		
84	16.675	0.310		
86	16.675	0.310		
88	16.744	0.241		
90	16.675	0.310		
92	16.675	0.310		
94	16.675	0.310		
96	16.675	0.310		
98	16.675	0.310		
100	16.675	0.310		
110	16.675	0.310	6.0	
120 130	16.675 16.675	0.310 0.310	6.0	
140	16.744	0.310		
150	16.744	0.241		
160	16.744	0.241		
170	16.812	0.173		
180	16.744	0.241	6.0	
190	16.812	0.173		
200	16.812	0.173		
210	16.812	0.173		
220	16.881	0.104		
230	16.812	0.173		
240	16.881	0.104	6.0	
250	16.881	0.104		
260	16.812	0.173		
270	16.812	0.173		
280	16.744	0.241		
290	16.744	0.241		
300	16.744	0.241	6.0	
310	16.812	0.173		
320	16.744	0.241		
330	16.744	0.241		
340	16.744	0.241		
350	16.744	0.241		
352	16.744	0.241		

Time (mins)	Head above logger (m)	Injection Head (m)	Injection Rate (L/s)	Comment
354	16.744	0.241	, ,	
356	16.744	0.241		
358	16.744	0.241		
360	16.744	0.241	6.0	
370	16.675	0.310		
380	16.675	0.310		
390	16.675	0.310		
400	16.675	0.310		
410	16.675	0.310		
420	16.675	0.310	6.0	
430	16.675	0.310		
440	16.709	0.276		
450	16.709	0.276		
460	16.709	0.276		
470	16.709	0.276	0.0	
480	16.709	0.276	6.0	
490 500	16.640	0.345		
500 510	16.640 16.640	0.345 0.345		
520	16.640	0.345		
530	16.640	0.345		
540	16.571	0.414		
550	16.571	0.414		
560	16.640	0.345		
570	16.640	0.345		
580	16.640	0.345		
590	16.640	0.345		
600	16.640	0.345	6.0	
610	16.640	0.345		
620	16.640	0.345		
630	16.640	0.345		
640	16.640	0.345		
650	16.640	0.345		
660	16.640	0.345		
670	16.640	0.345		
680	16.571	0.414		
690	16.571	0.414		
700	16.571	0.414		
710	16.571	0.414		
720	16.571	0.414	6.0	
730	16.640	0.345		
740 750	16.640	0.345		
750 760	16.640 16.640	0.345		
760 770	16.640 16.640	0.345		
770	16.640	0.345		

Time (mins)	Head above logger (m)	Injection Head (m)	Injection Rate (L/s)	Comment
780	16.640	0.345	,	
790	16.571	0.414		
800	16.571	0.414		
810	16.571	0.414		
820	16.571	0.414		
830	16.571	0.414		
840	16.571	0.414		
850	16.571	0.414		
860	16.571	0.414		
870	16.571	0.414		
880	16.571	0.414		
890	16.571	0.414		
900	16.571	0.414		
910	16.571	0.414		
920	16.571	0.414		
930	16.571	0.414		
940	16.571	0.414		
950	16.571	0.414		
960	16.571	0.414	6.0	
970	16.571	0.414		
980	16.571	0.414		
990	16.571	0.414		
1000	16.571	0.414		
1030	16.571	0.414		
1060	16.571	0.414		
1090	16.571	0.414		
1120	16.571	0.414		
1150	16.571	0.414	2.2	
1180	16.571	0.414	6.0	
1210	16.571	0.414		
1240	16.571	0.414		
1270	16.571 16.571	0.414		
1300	16.571	0.414		
1330	16.606 15.124	0.379		
1360 1390	15.124 14.917	1.861 2.068		
1420	15.055	1.930		
1420	10.000	1.930		Replaced filter to 100
1430	16.640	0.345		micron
1450	16.640	0.345		
1480	16.744	0.241		
1510	16.744	0.241		
1540	16.744	0.241		
1570	16.812	0.173		
1600	16.744	0.241		

Time				
(mins)	Head above logger (m)	-	Injection Rate (L/s)	Comment
1630	16.744	0.241		
1660	16.812	0.173	0.0	
1690	16.812	0.173	6.0	
1720	16.812	0.173		
1750	16.812	0.173		
1780	16.812	0.173		
1810	16.744	0.241		
1840	16.744	0.241		
1870	16.675	0.310		
1900	16.675	0.310	0.0	
1930	16.675	0.310	6.0	
1960	16.675	0.310		
1990	16.675	0.310		
2020 2050	16.675 16.675	0.310 0.310		
2080	16.675	0.310		
2110	16.675	0.310		
2110	16.675	0.310	6.0	
2170	16.675	0.310	0.0	
2200	16.675	0.310		
2230	16.675	0.310		
2260	16.675	0.310		
2290	16.675	0.310		
2320	16.675	0.310		
2350	16.675	0.310		
2380	16.675	0.310	6.0	
2410	16.675	0.310	0.0	
2440	16.675	0.310		
2470	16.675	0.310		
2500	16.675	0.310		
2530	16.675	0.310		
2560	16.675	0.310		
2590	16.744	0.241		
2620	16.744	0.241		
2650	16.744	0.241	6.0	
2680	16.744	0.241		
2710	16.744	0.241		
2740	16.744	0.241		
2770	16.744	0.241		
2800	16.744	0.241		
2830	16.744	0.241		
2860	16.502	0.483	6.0	
2890	16.778	0.207		
2920	16.778	0.207		
2950	16.847	0.138		

Time				
(mins)	Head above logger (m)	-	Injection Rate (L/s)	Comment
2980	16.916	0.069		
3010	16.916	0.069	6.0	
3040	16.916	0.069		
3070	16.916	0.069		
3100	16.847	0.138		
3130	16.950	0.035	6.0	
3160	16.881	0.104		
3190	16.881	0.104		
3220	16.812	0.173		
3250	16.812	0.173		
3280	16.812	0.173		
3310	16.812	0.173	0.0	
3340	16.812	0.173	6.0	
3370	16.812	0.173		
3400	16.812	0.173		
3430	16.812	0.173		
3460	16.812	0.173		
3490	16.812	0.173		
3520	16.812	0.173		
3550	16.812	0.173		
3580	16.812	0.173		
3610	16.812	0.173		
3640	16.812	0.173		
3670	16.812	0.173		
3700	16.812	0.173	6.0	
3730	16.812	0.173	6.0	
3760	16.881 16.881	0.104 0.104		
3790				
3820	16.881	0.104		
3850	16.881	0.104 0.104		
3880	16.881			
3910 3940	16.881 16.881	0.104 0.104	6.0	
			0.0	
3970	16.881	0.104 0.104		
4000	16.881			
4030 4060	16.881 16.881	0.104 0.104		
4090	16.881	0.104		
4120 4150	16.881 16.881	0.104 0.104		
4150 4180	16.881 16.881	0.104		
4210	16.881	0.104	6.0	
4240	16.881	0.104	0.0	
4240 4270	16.881	0.104		
4300	16.950	0.035		
4300	10.800	0.033		

Time				
(mins)	Head above logger (m)	-	Injection Rate (L/s)	Comment
4330	16.950	0.035		
4360	16.950	0.035		
4390	16.950	0.035		
4420	16.950	0.035		
4450	16.950	0.035	6.0	
4480	16.950	0.035		
4510	17.123	-0.138		
4540	17.019	-0.034		
4570	17.019	-0.034	6.0	
4600	16.950	0.035		
4630	16.950	0.035		
4660	16.950	0.035		
4690	16.950	0.035		
4720	16.881	0.104		
4750	16.950	0.035	0.0	
4780	16.950	0.035	6.0	
4810	16.950	0.035		
4840	16.950	0.035		
4870	16.950	0.035		
4900	16.950 16.050	0.035		
4930 4960	16.950 16.950	0.035 0.035		
4990	16.950	0.035		
5020	16.950	0.035		
5050	16.950	0.035		
5080	16.950	0.035		
5110	16.950	0.035		
5140	16.950	0.035		
5170	16.950	0.035	6.0	
5200	16.950	0.035	0.0	
5230	16.950	0.035		
5260	16.950	0.035		
5290	16.950	0.035		
5320	16.950	0.035		
5350	16.950	0.035		
5380	16.950	0.035		
5410	16.950	0.035	6.0	
5440	16.950	0.035		
5470	16.950	0.035		
5500	16.950	0.035		
5530	16.950	0.035		
5560	16.950	0.035		
5590	16.950	0.035		
5620	16.881	0.104		
5650	16.881	0.104	6.0	

Time (mins)	Head above logger (m)	Injection Head (m)	Injection Rate (L/s)	Comment
5680	16.881	0.104		
5710	16.950	0.035		
5740	16.950	0.035		
5770	17.019	-0.034		
5800	16.881	0.104		
5830	17.019	-0.034		
5860	17.019	-0.034		
5880	17.157	-0.172	6.0	
5910	17.088	-0.103		
5940	17.088	-0.103		
5970	17.088	-0.103		
6000	17.088	-0.103		
6030	17.088	-0.103		
6060	17.157	-0.172		
6090	17.157	-0.172	0.0	
6120	17.157	-0.172	6.0	
6150	17.054	-0.069		
6180	17.054	-0.069		
6210	16.985	0.000		
6240 6270	16.985 16.985	0.000 0.000		
6300	16.985	0.000		
6330	16.985	0.000		
6360	16.985	0.000		
6390	16.985	0.000		
6420	16.985	0.000		
6450	16.985	0.000		
6480	16.916	0.069		
6510	16.916	0.069		
6540	16.916	0.069		
6570	16.916	0.069		
6600	16.916	0.069	6.0	
6630	16.916	0.069		
6660	16.916	0.069		
6690	16.916	0.069		
6720	16.916	0.069		
6750	16.916	0.069		
6780	16.916	0.069		
6810	16.916	0.069		
6840	16.916	0.069	6.0	
6870	16.916	0.069		
6900	16.916	0.069		
6930	16.916	0.069		
6960	16.916	0.069		
6990	16.916	0.069		

Time	Head above leaves (m)	luis ation Hand (m)	Injection Date (I /a)	Commont
(mins) 7020	Head above logger (m) 16.916	0.069	injection Rate (L/S)	Comment
7050	16.916	0.069		
7080	16.916	0.069	6.0	
7110	16.916	0.069	0.0	
7110	16.778	0.207		
7140	16.985	0.000		
7170	16.985	0.000		
7230	17.088	-0.103		
7230 7260	16.985	0.000		
7290	17.088	-0.103		
7320	17.088	-0.103	6.0	
7350	17.157	-0.172	0.0	
7380	17.157	-0.172		
7410	17.157	-0.172		
7440	17.157	-0.172		
7470	17.157	-0.172		
7500	17.157	-0.172		
7530	17.088	-0.103		
7560	17.157	-0.172	6.0	
7590	17.088	-0.103	0.0	
7620	17.088	-0.103		
7650	17.088	-0.103		
7680	16.985	0.000		
7710	16.985	0.000		
7740	16.985	0.000		
7770	16.985	0.000		
7800	16.985	0.000	6.0	
7830	16.985	0.000		
7860	16.985	0.000		
7890	16.985	0.000		
7920	16.950	0.035		
7950	16.950	0.035		
7980	17.019	-0.034		
8010	17.019	-0.034		
8040	17.019	-0.034	6.0	
8070	17.019	-0.034		
8100	17.019	-0.034		
8130	17.019	-0.034		
8160	17.019	-0.034		
8190	17.019	-0.034		
8220	17.019	-0.034		
8250	17.019	-0.034		
8280	17.019	-0.034	6.0	
8310	17.019	-0.034		
8340	17.019	-0.034		

Time (mins)	Head above logger (m)	Injection Head (m)	Injection Pate (I /s)	Comment
8370	17.019	-0.034	injection Rate (£/3)	Comment
8400	17.019	-0.034		
8430	17.019	-0.034		
8460	17.019	-0.034		
8490	17.019	-0.034		
8520	17.019	-0.034	6.0	
8550	17.019	-0.034		
8580	17.019	-0.034		
8610	17.019	-0.034		
8640	17.019	-0.034		
8670	17.019	-0.034		
8700	17.088	-0.103		
8730	17.088	-0.103		
8760	17.088	-0.103	6.0	
8790	17.157	-0.172		
8820	17.157	-0.172		
8850	16.985	0.000		
8880	17.226	-0.241		
8910	17.226	-0.241		
8940	17.226	-0.241		
8970	17.226	-0.241	0.0	
9000	17.157	-0.172	6.0	
9030	17.157	-0.172 0.103		
9060 9090	17.088 17.088	-0.103 -0.103		
9120	17.019	-0.034		
9150	17.019	-0.034		
9180	17.019	-0.034		
9210	17.019	-0.034		
9240	17.019	-0.034	6.0	
9270	17.019	-0.034		
9300	17.019	-0.034		
9330	17.019	-0.034		
9360	17.019	-0.034		
9390	17.019	-0.034		
9420	17.019	-0.034		
9450	17.019	-0.034		
9480	17.019	-0.034	6.0	
9510	17.019	-0.034		
9540	17.019	-0.034		
9570	17.019	-0.034		
9600	17.019	-0.034		
9630	17.019	-0.034		
9660	17.019	-0.034		
9690	17.019	-0.034		

Time (mins)	Head above logger (m)	Injection Head (m)	Injection Rate (L/s)	Comment
9720	17.019	-0.034	6.0	
9750	17.019	-0.034		
9780	17.019	-0.034		
9810	17.019	-0.034		
9840	17.019	-0.034		
9870	17.019	-0.034		
9900	17.019	-0.034		
9930	17.019	-0.034		
9960	17.019	-0.034	6.0	
9990	17.019	-0.034		
10020	17.019	-0.034		
10050	17.088	-0.103		
10080	17.088	-0.103		
40000	40.005	4 000	0.0	Injection rate
10098	18.605	-1.620	8.0	increased
10100	20.052	-3.067		
10102	20.190	-3.205		
10104	20.190	-3.205		
10106	20.190	-3.205		
10108 10110	20.190 20.190	-3.205	8.0	
10110	20.190	-3.205 -3.205	0.0	
10112	20.190	-3.205		
10114	20.190	-3.205		
10118	20.259	-3.274		
10110	20.190	-3.205		
10122	20.190	-3.205		
10124	20.190	-3.205		
10126	20.190	-3.205		
10128	20.190	-3.205		
10130	20.190	-3.205		
10132	20.190	-3.205		
10134	20.190	-3.205		
10136	20.259	-3.274		
10138	20.259	-3.274		
10140	20.259	-3.274	8.0	
10142	20.086	-3.101		
10144	20.431	-3.446		
10146	21.844	-4.859		
10148	21.741	-4.756		
10150	21.672	-4.687		
10152	21.672	-4.687		
10154	21.672	-4.687		
10156	21.672	-4.687	9.0	
10158	21.672	-4.687		

Time (mins)	Head above logger (m)	Injection Head (m)	Injection Rate (L/s)	Comment
10160	21.672	-4.687	. ,	
10162	21.672	-4.687		
10164	21.775	-4.790		
10166	21.775	-4.790		
10168	21.775	-4.790		
10170	21.775	-4.790	9.0	
10172	21.775	-4.790		
10174	22.673	-5.688		
10176	22.949	-5.964		
10178	23.052	-6.067		
10180	23.052	-6.067		
10182	23.156	-6.171		
10184	23.156	-6.171		
10186	23.294	-6.309	10.0	
10188	23.294	-6.309		
10190	23.363	-6.378		
10192	23.363	-6.378		
10194	23.466	-6.481 6.481		
10196	23.466	-6.481 6.481		
10198 10200	23.466 23.466	-6.481 -6.481	10.0	
10200	23.535	-6.550	10.0	
10202	23.535	-6.550		
10204	23.535	-6.550		
10208	23.535	-6.550		
10210	23.535	-6.550		
10212	23.604	-6.619		
10214	23.604	-6.619		
10216	23.604	-6.619		
10218	23.604	-6.619		
10220	23.604	-6.619		
10222	23.673	-6.688		
10224	23.673	-6.688		
10226	23.673	-6.688		
10228	23.673	-6.688		
10230	23.673	-6.688	10.0	
10232	23.673	-6.688		
10234	23.673	-6.688		
10236	23.673	-6.688		
10238	23.673	-6.688		
10240	23.535	-6.550		
10242	23.707	-6.722		
10244	23.707	-6.722		
10246	23.707	-6.722		
10248	23.707	-6.722		

Time (mins)	Head above logger (m)	Injection Head (m)	Injection Rate (L/s)	Comment
10250	23.707	-6.722		
10252	23.707	-6.722		
10254	23.707	-6.722		
10256	23.707	-6.722		
10258	23.776	-6.791		
10260	26.533	-9.548	12.0	
10262	26.637	-9.652		
10264	26.706	-9.721		
10266	26.706	-9.721		
10268	26.878	-9.893		
10270	26.981	-9.996		
10272	27.050	-10.065		
10274	27.154	-10.169		
10276	27.222	-10.237		
10278	27.222	-10.237		
10280	27.326	-10.341		
10282	27.326	-10.341		
10284	27.326	-10.341		
10286	27.429	-10.444		
10288	27.429	-10.444		
10290	27.429	-10.444	12.0	
10292	27.498	-10.513		
10294	27.395	-10.410		
10296	27.567	-10.582		
10298	27.567	-10.582		
10300	27.567	-10.582		
10302	27.567	-10.582		
10304	27.498	-10.513		
10306	27.602	-10.617		
10308	27.602	-10.617		
10310	27.602	-10.617		
10312	27.602	-10.617		
10314	27.602	-10.617		
10316	27.602	-10.617		
10318	27.602	-10.617		
10320	27.602	-10.617		
10322	27.602	-10.617		
10324	27.671	-10.686		
10326	27.671	-10.686		
10328	27.671	-10.686		
10330	27.671	-10.686		
10332	27.671	-10.686		
10334	27.671	-10.686		
10336	27.671	-10.686		
10338	27.671	-10.686		

Time				
(mins)	Head above logger (m)	-	Injection Rate (L/s)	Comment
10340	27.671	-10.686		
10342	27.671	-10.686		
10344	27.671	-10.686		
10346	27.671	-10.686		
10348	27.671	-10.686		
10350	27.671	-10.686	12.0	
10352	27.671	-10.686		
10354	27.671	-10.686		
10356	27.671	-10.686		
10358	27.671	-10.686		
10360 10362	27.774 27.671	-10.789 -10.686		
10364	27.739	-10.754		
10366	27.636	-10.754		
10368	27.774	-10.789		
10370	27.774	-10.789		
10370	27.774	-10.789		
10374	27.774	-10.789		
10376	27.774	-10.789		
10378	27.705	-10.720		
10380	27.774	-10.789		
10382	27.774	-10.789		
10384	27.774	-10.789		
10386	27.671	-10.686		
10388	27.739	-10.754		
10390	27.739	-10.754		
10392	27.739	-10.754		
10394	27.739	-10.754		
10396	27.671	-10.686		
10398	27.671	-10.686		
10400	27.671	-10.686		
10402	27.739	-10.754		
10404	27.739	-10.754		
10406	27.671	-10.686		
10408	27.671	-10.686		
10410	27.567	-10.582	12.0	
10412	27.567	-10.582		
10414	27.567	-10.582		
10416	27.395	-10.410		
10418	27.395	-10.410		
10420	27.291	-10.306		
10422	27.188	-10.203		
10424	27.188	-10.203		
10426	27.050	-10.065		
10428	27.050	-10.065		

Time (mins)	Head above logger (m)	Injection Head (m)	Injection Rate (L/s)	Comment
10430	26.981	-9.996	, ,	
10432	25.775	-8.790		
10434	25.637	-8.652		
10436	25.534	-8.549		
10438	25.465	-8.480		
	2000	000		Changed filter to 200
10440	25.327	-8.342	10.0	micron
10442	22.846	-5.861		dropped rate back to 10 L/s
				for 15 minutes then
10444	21.810	-4.825		back to
10446	22.122	-5.137		12 L/s
10448	23.328	-6.343		
10450	25.051	-8.066		
10452	24.017	-7.032		
10454	23.569	-6.584		
10456	23.776	-6.791		
10458	23.776	-6.791		
10460	23.776	-6.791		
10462	23.466	-6.481		
10464	23.466	-6.481		
10466	23.466	-6.481		
10468	25.327	-8.342		
10470	27.222	-10.237		
10472	27.395	-10.410		
10474	27.395	-10.410		
10476	27.395	-10.410		
10478	27.395	-10.410		
10480	27.395	-10.410		
10482	27.395	-10.410		
10484	27.395	-10.410		
10486	27.395	-10.410		
10488	27.395	-10.410		
10490	27.395	-10.410		
10492	27.395	-10.410		
10494	27.705	-10.720		
10496	27.705	-10.720		
10498	27.705	-10.720		
10500	27.705	-10.720		
10502	27.705	-10.720		
10504	27.774	-10.789		
10506	27.774	-10.789		
10508	27.774	-10.789		
10510	27.705	-10.720		
10512	27.705	-10.720		
		-		

Time	Hand above to won (m)		Inication Data (I (a)	0
(mins) 10514	Head above logger (m) 27.705	-10.720	injection Rate (L/S)	Comment
10514	27.705 27.705	-10.720 -10.720		
10518	27.705 27.705	-10.720		
10510	27.705	-10.720		
10520	27.705	-10.720		
10540	27.705	-10.720		
10550	27.705	-10.720		
10560	27.705	-10.720		
10570	27.705	-10.720		
10580	27.705	-10.720		
10590	27.705	-10.720		
10600	27.705	-10.720		
10610	27.705	-10.720		
10620	27.705	-10.720		
10630	27.774	-10.789		
10640	27.705	-10.720		
10650	27.774	-10.789		
10660	27.705	-10.720		
10670	27.774	-10.789		
10680	27.705	-10.720		
10690	27.705	-10.720		
10700	27.774	-10.789		
10710	27.774	-10.789		
10720	27.774	-10.789		
10730	27.774	-10.789		
10740	27.774	-10.789		
10750	27.774	-10.789		
10760	27.774	-10.789		
10770	27.774	-10.789		
10780	27.739	-10.754		
10790	27.739	-10.754		
10800	27.808	-10.823		
10810	27.808	-10.823		
10820	27.808	-10.823		
10830	27.808	-10.823		
10840	27.808	-10.823		
10850	27.808	-10.823		
10860	27.808	-10.823		
10870	27.808	-10.823		
10880	27.808	-10.823		
10890	27.808	-10.823		
10900 10910	27.808 27.877	-10.823 -10.892		
10910	27.877 27.877	-10.892 -10.892	12.0	
10920			12.0	
10930	27.808	-10.823		

Time (mins)	Head above logger (m)	Injection Head (m)	Injection Rate (L/s)	Comment
10940	27.877	-10.892	,00	
10950	27.877	-10.892		
10960	27.877	-10.892		
10970	27.877	-10.892		
10980	27.877	-10.892		
10990	27.946	-10.961		
11000	27.877	-10.892		
11010	27.946	-10.961		
11020	27.946	-10.961		
11030	27.946	-10.961		
11040	27.946	-10.961		
11050	27.946	-10.961		
11060	27.946	-10.961		
11070	27.946	-10.961		
11080	27.946	-10.961		
11090	27.946	-10.961		
11100	27.946	-10.961		
11110	27.946	-10.961		
11120	27.946	-10.961		
11130	27.946	-10.961		
11140 11150	27.946 27.946	-10.961 -10.961		
11160	27.946 27.946	-10.961	12.0	
11170	27.946	-10.961	12.0	
11180	27.946	-10.961		
11190	27.946	-10.961		
11200	27.946	-10.961		
11210	27.946	-10.961		
11220	27.946	-10.961		
11230	27.946	-10.961		
11240	27.946	-10.961		
11250	27.946	-10.961		
11260	28.015	-11.030		
11270	27.946	-10.961		
11280	27.946	-10.961		
11290	27.946	-10.961		
11300	27.946	-10.961		
11310	27.946	-10.961		
11320	27.946	-10.961		
11330	27.946	-10.961		
11340	28.015	-11.030		
11350	28.015	-11.030		
11360	28.015	-11.030		
11370	28.015	-11.030		
11380	28.015	-11.030		

Time				
(mins)	Head above logger (m)	-	Injection Rate (L/s)	Comment
11390	28.015	-11.030		
11400	28.015	-11.030	12.0	
11410	28.015	-11.030		
11420	28.015	-11.030		
11450	28.015	-11.030		
11480	28.015	-11.030		
11510	28.050	-11.065		
11540	27.981	-10.996		
11570	27.981	-10.996		
11572	27.981	-10.996		
11574	27.981	-10.996		
11612	28.015	-11.030		
11642	28.015	-11.030	12.0	
11672	28.015	-11.030		
11702	28.015	-11.030		
11732	28.119	-11.134		
11762	28.119	-11.134		
11792	28.119	-11.134		
11822	28.119	-11.134		
11852	28.119	-11.134		
11882	28.119	-11.134	12.0	
11912	28.119	-11.134		
11942	28.119	-11.134		
11972	28.119	-11.134		
12002	28.119	-11.134		
12032	28.119	-11.134		
12062	28.119	-11.134		
12092	28.119	-11.134	40.0	
12122	28.119	-11.134	12.0	
12152	28.119	-11.134		
12182	28.119	-11.134		
12212	28.119	-11.134		
12242	28.119	-11.134		
12272	28.119	-11.134		
12302	28.119	-11.134		
12332	28.119	-11.134	40.0	
12362	28.119	-11.134	12.0	
12392	28.187	-11.202		
12422	28.187	-11.202		
12452	28.187	-11.202		
12482	28.187	-11.202		
12512	28.187	-11.202		
12542	28.187	-11.202		
12572	28.187	-11.202	12.0	
12602	28.187	-11.202	12.0	

Time				
(mins)	Head above logger (m)	-	Injection Rate (L/s)	Comment
12632	28.187	-11.202		
12662	28.187	-11.202		
12692	28.187	-11.202		
12722	28.187	-11.202		
12752	28.256	-11.271		
12782	28.187	-11.202		
12812	28.187	-11.202		
12842	28.187	-11.202	12.0	
12872	28.256	-11.271		
12902	28.256	-11.271		
12932	28.256	-11.271		
12962	28.256	-11.271		
12992	28.256	-11.271		
13022	28.256	-11.271		
13052	28.187	-11.202		
13082	28.187	-11.202	12.0	
13112	28.291	-11.306		
13142	28.291	-11.306		
13172	28.291	-11.306		
13202	28.291	-11.306		
13232	28.291	-11.306		
13262	28.291	-11.306		
13292	28.291	-11.306	40.0	
13322	28.291	-11.306	12.0	
13352	28.291	-11.306		
13382	28.291	-11.306		
13412	28.360	-11.375		
13442	28.360	-11.375		
13472	28.360	-11.375		
13502	28.360	-11.375		
13532	28.360	-11.375	40.0	
13562	28.291	-11.306	12.0	
13592	28.291	-11.306		
13622 13652	28.291	-11.306		
	28.291	-11.306		
13682	28.291	-11.306		
13712	28.291	-11.306		
13742	28.291	-11.306		
13772	28.360	-11.375	12.0	
13802	28.360	-11.375	12.0	
13832 13862	28.360	-11.375 11.375		
	28.360	-11.375		
13892 13922	28.360	-11.375 11.375		
	28.360	-11.375 11.375		
13952	28.360	-11.375		

Time				
(mins)	Head above logger (m)	Injection Head (m)	Injection Rate (L/s)	Comment
13982	28.360	-11.375		
14012	28.360	-11.375		
14042	28.360	-11.375	12.0	
14072	28.429	-11.444		
14102	28.429	-11.444		
14132	28.360	-11.375		
14162	28.498	-11.513		
14192	28.498	-11.513		
14222	28.498	-11.513		
14252	28.429	-11.444		
14282	28.429	-11.444	12.0	
14312	28.429	-11.444		
14342	28.429	-11.444		
14372	28.429	-11.444		
14402	28.429	-11.444		Pump stopped
				6736.13 KL pumped

UNITS OF MEASUREMENT

Units of measurement commonly used (SI and non-SI Australian legal)

Name of unit	Symbol	Definition in terms of other metric units	Quantity
day	d	24 h	time interval
gigalitre	GL	10 ⁶ m ³	volume
gram	g	10 ^{–3} kg	mass
hectare	ha	10^4m^2	area
hour	h	60 min	time interval
kilogram	kg	base unit	mass
kilolitre	kL	1 m ³	volume
kilometre	km	10 ³ m	length
litre	L	10^{-3}m^3	volume
megalitre	ML	10 ³ m ³	volume
metre	m	base unit	length
microgram	μg	10 ⁻⁶ g	mass
microlitre	μL	10 ⁻⁹ m ³	volume
milligram	mg	10 ⁻³ g	mass
millilitre	mL	10^{-6} m^3	volume
millimetre	mm	10 ⁻³ m	length
minute	min	60 s	time interval
second	s	base unit	time interval
tonne	t	1000 kg	mass
year	y	365 or 366 days	time interval

Shortened forms

~	approximately equal to	рН	acidity
agl	above ground level	ppb	parts per billion
bgs	below ground surface	ppm	parts per million
bgl	below ground level	PSD	particle size distribution
DO	Dissolved oxygen	PVC	polyvinyl chloride
EC	electrical conductivity (μS/cm)	TDS	total dissolved solids
FRP	fibreglass reinforced plastic		
ID	Internal diameter		
K	hydraulic conductivity (m/d)		
ORP	oxidation-reduction potential		

GLOSSARY

Ambient — The background level of an environmental parameter (e.g. a measure of water quality such as salinity)

Ambient water monitoring — All forms of monitoring conducted beyond the immediate influence of a discharge pipe or injection well, and may include sampling of sediments and living resources

Ambient water quality — The overall quality of water when all the effects that may impact upon the water quality are taken into consideration

Aquiclude — In hydrologic terms, a formation that contains water but cannot transmit it rapidly enough to furnish a significant supply to a well or spring

Aquifer — An underground layer of rock or sediment that holds water and allows water to percolate through

Aquifer, confined — Aquifer in which the upper surface is impervious (see 'confining layer') and the water is held at greater than atmospheric pressure; water in a penetrating well will rise above the surface of the aquifer

Aquifer test — A hydrological test performed on a well, aimed to increase the understanding of the aquifer properties, including any interference between wells, and to more accurately estimate the sustainable use of the water resources available for development from the well

Aquifer, unconfined — Aquifer in which the upper surface has free connection to the ground surface and the water surface is at atmospheric pressure

Aquitard — A layer in the geological profile that separates two aquifers and restricts the flow between them

ASR — Aquifer Storage and Recovery; involves the process of recharging water into an aquifer for the purpose of storage and subsequent withdrawal; also known as aquifer storage and retrieval

Artesian — An aquifer in which the water surface is bounded by an impervious rock formation; the water surface is at greater than atmospheric pressure, and hence rises in any well which penetrates the overlying confining aguifer

Artificial recharge — The process of artificially diverting water from the surface to an aquifer; artificial recharge can reduce evaporation losses and increase aquifer yield; see also 'natural recharge', 'aquifer'

Baseflow — The water in a stream that results from groundwater discharge to the stream; often maintains flows during seasonal dry periods and has important ecological functions

Basin — The area drained by a major river and its tributaries

Bgs — below ground surface

Biodiversity — (1) The number and variety of organisms found within a specified geographic region. (2) The variability among living organisms on the earth, including the variability within and between species and within and between ecosystems

Bore — See 'well'

Catchment — That area of land determined by topographic features within which rainfall will contribute to run-off at a particular point

Cone of depression — An inverted cone-shaped space within an aquifer caused by a rate of groundwater extraction that exceeds the rate of recharge; continuing extraction of water can extend the area and may affect the viability of adjacent wells, due to declining water levels or water quality

Confining layer — A rock unit impervious to water, which forms the upper bound of a confined aquifer; a body of impermeable material adjacent to an aquifer; see also 'aquifer, confined'

Report DWLBC 2009/01

129

Contaminant — A material added by humans or natural activities that may, in sufficient concentrations, render the environment unacceptable for biota; the presence of these materials is not necessarily harmful

CSIRO — Commonwealth Scientific and Industrial Research Organisation

DEH — Department for Environment and Heritage (Government of South Australia)

Diversity — The distribution and abundance of different kinds of plant and animal species and communities in a specified area

DO — Dissolved Oxygen

DOC — Dissolved Organic Carbon

Domestic purpose — The taking of water for ordinary household purposes; includes the watering of land in conjunction with a dwelling not exceeding 0.4 hectares

Dryland salinity — The process whereby salts stored below the surface of the ground are brought close to the surface by the rising watertable. The accumulation of salt degrades the upper soil profile, with impacts on agriculture, infrastructure and the environment.

DWLBC — Department of Water, Land and Biodiversity Conservation (Government of South Australia)

EC — Electrical conductivity; 1 EC unit = 1 micro-Siemen per centimetre (μ S/cm) measured at 25°C; commonly used as a measure of water salinity as it is quicker and easier than measurement by TDS

Ecology — The study of the relationships between living organisms and their environment

Ecosystem — Any system in which there is an interdependence upon, and interaction between, living organisms and their immediate physical, chemical and biological environment

Ephemeral streams or wetlands — Those streams or wetlands that usually contain water only on an occasional basis after rainfall events. Many arid zone streams and wetlands are ephemeral.

Evapotranspiration — The total loss of water as a result of transpiration from plants and evaporation from land, and surface water bodies

EWS — Engineering and Water Supply Department (Government of South Australia); now 'SA Water'

Floodplain — Of a watercourse means: (1) floodplain (if any) of the watercourse identified in a catchment water management plan or a local water management plan; adopted under the Act; or (2) where (1) does not apply — the floodplain (if any) of the watercourse identified in a development plan under the *Development (SA) Act 1993*; or (3) where neither (1) nor (2) applies — the land adjoining the watercourse that is periodically subject to flooding from the watercourse

Fully-penetrating well — In theory this is a wellhole that is screened throughout the full thickness of the target aquifer; in practice, any screen that is open to at least the mid 80% of a confined aquifer is regarded as fully-penetrating

Geological features — Include geological monuments, landscape amenity and the substrate of land systems and ecosystems

Groundwater — Water occurring naturally below ground level or water pumped, diverted and released into a well for storage underground; see also 'underground water'

Hydraulic conductivity (K) — A measure of the ease of flow through aquifer material: high K indicates low resistance, or high flow conditions; measured in metres per day

Hydrogeology — The study of groundwater, which includes its occurrence, recharge and discharge processes, and the properties of aquifers; see also 'hydrology'

Hydrology — The study of the characteristics, occurrence, movement and utilisation of water on and below the Earth's surface and within its atmosphere; see also 'hydrogeology'

Infrastructure — Artificial lakes; dams or reservoirs; embankments, walls, channels or other works; buildings or structures; or pipes, machinery or other equipment

Injection well — An artificial recharge well through which water is pumped or gravity-fed into the ground

Report DWLBC 2009/01 130

Lake — A natural lake, pond, lagoon, wetland or spring (whether modified or not) that includes part of a lake and a body of water declared by regulation to be a lake. A reference to a lake is a reference to either the bed, banks and shores of the lake or the water for the time being held by the bed, banks and shores of the lake, or both, depending on the context.

Land — Whether under water or not, and includes an interest in land and any building or structure fixed to the land

m AHD — Defines elevation in metres (m) according to the Australian Height Datum (AHD)

Monitoring — (1) The repeated measurement of parameters to assess the current status and changes over time of the parameters measured (2) Periodic or continuous surveillance or testing to determine the level of compliance with statutory requirements and/or pollutant levels in various media or in humans, animals, and other living things

Native species — Any animal and plant species originally in Australia; see also 'indigenous species'

Observation well — A narrow well or piezometer whose sole function is to permit water level measurements

Obswell — Observation Well Network

Penetrating well — See 'fully-penetrating well'

Perennial streams — Permanently inundated surface stream courses. Surface water flows throughout the year except in years of infrequent drought.

pH - acidity

Piezometer — A narrow tube, pipe or well; used for measuring moisture in soil, water levels in an aquifer, or pressure head in a tank, pipeline, etc

Potentiometric head — The potentiometric head or surface is the level to which water rises in a well due to water pressure in the aquifer, measured in metres (m); also known as piezometric surface

Production well — The pumped well in an aquifer test, as opposed to observation wells; a wide-hole well, fully developed and screened for water supply, drilled on the basis of previous exploration wells

Ramsar Convention — This is an international treaty on wetlands titled *The Convention on Wetlands of International Importance Especially as Waterfowl Habitat*. It is administered by the International Union for Conservation of Nature and Natural Resources. It was signed in the town of Ramsar, Iran in 1971, hence its common name. The convention includes a list of wetlands of international importance and protocols regarding the management of these wetlands. Australia became a signatory in 1974.

SA Geodata — A collection of linked databases storing geological and hydrogeological data, which the public can access through the offices of PIRSA. Custodianship of data related to minerals and petroleum, and groundwater, is vested in PIRSA and DWLBC, respectively. DWLBC should be contacted for database extracts related to groundwater

Specific storage (S_s) — Specific storativity; the amount of stored water realised from a unit volume of aquifer per unit decline in head; it is dimensionless

Specific yield (S_y) — The volume ratio of water that drains by gravity, to that of total volume of the porous medium. It is dimensionless

(S) — Storativity; storage coefficient; the volume of groundwater released or taken into storage per unit plan area of aquifer per unit change of head; it is dimensionless

Surface water — (a) water flowing over land (except in a watercourse), (i) after having fallen as rain or hail or having precipitated in any another manner, (ii) or after rising to the surface naturally from underground; (b) water of the kind referred to in paragraph (a) that has been collected in a dam or reservoir

T — Transmissivity; a parameter indicating the ease of groundwater flow through a metre width of aquifer section (taken perpendicular to the direction of flow), measured in m²/d

TDS — Total dissolved solids, measured in milligrams per litre (mg/L); a measure of water salinity

Report DWLBC 2009/01 131

Tertiary aquifer — A term used to describe a water-bearing rock formation deposited in the Tertiary geological period (1–70 million years ago)

TKN — Total Kjeldahl Nitrogen; the sum of aqueous ammonia and organic nitrogen; used as a measure of probable sewage pollution

TN — Total nitrogen

TOC — Top of casing

Transmissivity (T) — A parameter indicating the ease of groundwater flow through a metre width of aquifer section

TSS — Dissolved suspended solids

Turbidity — The cloudiness or haziness of water (or other fluid) caused by individual particles that are too small to be seen without magnification, thus being much like smoke in air; measured in Nephelometric Turbidity Units (NTU)

Underground water (groundwater) — Water occurring naturally below ground level or water pumped, diverted or released into a well for storage underground

Watercourse — A river, creek or other natural watercourse (whether modified or not) and includes: a dam or reservoir that collects water flowing in a watercourse; a lake through which water flows; a channel (but not a channel declared by regulation to be excluded from the this definition) into which the water of a watercourse has been diverted; and part of a watercourse

Water quality data — Chemical, biological, and physical measurements or observations of the characteristics of surface and groundwaters, atmospheric deposition, potable water, treated effluents, and wastewater, and of the immediate environment in which the water exists

Well — (1) An opening in the ground excavated for the purpose of obtaining access to underground water. (2) An opening in the ground excavated for some other purpose but that gives access to underground water. (3) A natural opening in the ground that gives access to underground water

Wetlands — Defined by the Act as a swamp or marsh and includes any land that is seasonally inundated with water. This definition encompasses a number of concepts that are more specifically described in the definition used in the Ramsar Convention on Wetlands of International Importance. This describes wetlands as areas of permanent or periodic to intermittent inundation, whether natural or artificial, permanent or temporary, with water that is static or flowing, fresh, brackish or salt, including areas of marine water, the depth of which at low tides does not exceed six metres.

Report DWLBC 2009/01 132

REFERENCES

Dillon, P., Pavelic, P., Massmann, G., Barry, K. and Corell, R. (2001). Enhancement of the membrane filtration index (MFI) method for determining the clogging potential of turbid urban stormwater and reclaimed water used for aquifer storage and recovery. Desalination 140(2):153-165.

Magarey, P.D., and Osei-Bonsu, K. (2008). *Regional Disposal Strategy, Renmark Group Deep Aquifer Injection: Phase II Feasibility Study*. Department of Water Land and Biodiversity Conservation. DWLBC Report Book 2008/02.

Pavelic, P., Vanderzalm, J., Dillon, P., Herczeg, A., Barry, K., Levett, K., Mimoso, J. and Magarey, P (2007). Assessment of the Potential for Well Clogging Associated with Salt Water Interception and Deep Injection at Chowilla, SA. CSIRO Land and Water.

Rammers, N., Hill, T. and Yan, W. (2005). Regional Disposal Strategy – Renmark Group Deep Injection: Phase 1 Desktop Study. South Australia. Department of Water, Land and Biodiversity Conservation. DWLBC Report 2005/29.

Segalen, A..S., Pavelic, P and Dillon, P. J. (2005). *Review of Drilling, completion and remediation methods for ASR wells in unconsolidated aguiers*. CSIRO Land and Water Technical Report 04/05.

Smith, P.C., (1982). *Determination of Transmissivity from Airlift and Recovery.* Department of Mines and Energy, South Australia. Report Book 1982/33.