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EXECUTIVE SUMMARY 
The SA SMMSP represents a significant departure from previous studies seeking to apply 
airborne geophysics in land management, in that it was the first occasion in Australia 
where geophysical data were deliberately acquired as part of a broader natural resource 
management strategy that was already in place.  A carefully targeted approach was taken, 
giving due consideration to the problems being addressed.  Particular importance was 
attached to ensuring that geophysical data could provide a product of value and perhaps 
more importantly, how that product could be incorporated into implementing appropriate 
management strategies.  This approach reflected the thinking promoted earlier by George 
and Green (2000) on the relevance of airborne geophysics to land management.  

In the Tintinara study site in the Mallee region, the principal goal of the geophysical survey 
was to provide information to support management of the groundwater resource in the 
area.  The quality of the groundwater is at risk from salt stored in the deep soil profiles 
being leached into the aquifer.  Increases in horticultural development over the last 
decade have accelerated the processes of leaching.  To the west of the study area, on the 
Coastal Plains, water tables are shallow and remnant native vegetation is at risk of stress 
from waterlogging and salinity.  A combination of airborne geophysical techniques, 
rigorous field testing and modelling has shed light on these risks.    

The prime objectives of the project in the Tintinara region are to: 

(i) Map the shallow sub-surface clay within the Tintinara East region and adapt tools 
to use this information to predict the impact of land management decisions on the 
quality of the underlying groundwater resource.  Sub-surface clay has contradictory 
effects on groundwater salinisation: more clay means more salt, but it also slows 
down the leaching processes.   

(ii) Map zones of groundwater salinity on the Coastal Plain (Tintinara West) and use 
this information to study salinity impacts on native vegetation. 

An additional objective that arose from an enquiry was to map the extent of shallow 
basement rock to the west of the study area. 

The geophysics provided a reliable map of the thickness of sub-surface clay across the 
eastern study area.  There was a good match with recent, carefully logged stratigraphic 
records.  However, there was some discrepancy for large clay thicknesses with a few 
records, as extracted from the stratigraphic database.  Previous experience from the 
Riverland, where there was a good match between recent logs and the spatial pattern that 
corresponded to a geomorphic understanding of the landscape, suggests that the maps 
are nonetheless reliable. 

This information was used as input to a salt leaching model.  This provided predictions of 
the impact of clearing native vegetation in the area for agriculture.  The results showed 
that the amount of salt being leached into the aquifer increased as the effect of clearing 
reached the water table, and then decreased as the total salt store leached out.  The time 
for this to happen was shorter for the shallow water table areas to the west, where there is 
evidence of this occurring already.  To the east, the process may take 200 years.  
Superimposed on this east-west trend is a series of north-south trending linear features 
associated with the sub-surface clay. 

The salt leaching model was also applied to simulate the impacts of horticultural 
development.  The deep drainage flux under irrigated crops is likely to be dependent on 
the crop, irrigation management and soils.  To produce a risk map, it was assumed that 
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the deep drainage was a flat 150 mm/yr.  As a rule of thumb, this would cause the 
salinisation process to occur about 5 times more quickly. 

A subsequent scenario with a spatially variable rate for irrigation drainage (where irrigation 
drainage was chosen to be 5 times that of clearing induced drainage) was used as an 
input to a groundwater model (see below) employed to determine aquifer salinity trends.  
A spatially variable rate was chosen for this subsequent work to give greater account of 
the influence of variation in soil texture on drainage rates and provide continuity between 
leaching under dryland farming and the introduction of irrigated agriculture. 

These salt leaching model outputs, for both dryland and irrigation, were used as inputs to 
a MODFLOW groundwater model and the associated MT3D to predict impacts on 
groundwater levels, groundwater direction and groundwater salinity.  A good calibration 
was achieved.  The models predicted that even without irrigation, sufficient changes in 
groundwater salinity would occur in 50-100 years time to change the beneficial uses of the 
water (eg. threatening irrigation for some types of crops, or suitability for irrigation at all).  
These models should enable a prediction of the parameters of interest for a range of 
scenarios and should be used to consider the trade-offs between development and 
sustainability of the groundwater resource and between planning to optimise sustainability 
and equity issues. 

Improvements in water use efficiency will improve the longevity of the resource.  This 
would entail an understanding of deep drainage for combinations of irrigation 
management, crop type and soils.  A sensitivity analysis suggests that knowledge of the 
clay content of the surface soils is a very important parameter when determining the rate 
of salinisation.  Interpretation of previously surveyed radiometrics data for the area may 
improve the mapping of surface soils and hence provide enhanced estimates of clay 
content. 

The geophysics was used to map groundwater salinity in the western site (Coastal Plain).  
Here the contrasts in groundwater salinity were so large as to over-ride any conductivity 
differences associated with spatial variability in materials.  Even specific features such as 
irrigation recycling appeared to be detected.  The groundwater salinity map was used to 
investigate the influence of salinity on the health of remnant native vegetation.  
Unfortunately, there was no clear correspondence between plant health measures and 
groundwater salinity, even though there were indicators of increases in plant stress over 
the study period.   

Studies (described in Camp, 2003) showed that an estimated 605 ha of remnant 
vegetation was currently affected by salinity in the study area, with predictions that 
increasing salinity will impact a further 2 ha in 50 years and an increase of 51 ha on 
current levels in 100 years.  While the spread of salinity is not predicted to be large, rising 
salinity levels will intensify the stress on already salt affected vegetation.  Areas affected 
and at risk are also low because of the large areas of remnant communities already 
cleared for agricultural development, and because significant areas already have quite 
shallow watertables.  A longer period of monitoring is required to really detect trends 
against the background.  Because sites were selected before the geophysics became 
available, some are not ideal locations.  Those, that are, should be continued to be 
monitored. 

In the west of the Coastal Plain site, where the unconfined groundwater system becomes 
too saline for use, the confined aquifer is used.  However, the basement becomes high in 
places causing this aquifer to be absent in places.  An enquiry from a driller wishing to 
avoid this basement rock led to a mapping of the high basement elevations. 
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All of the set objectives were achieved, with an additional one also being completed.  The 
flying at this site benefited from pre-flight testing in the Riverland.  A much greater spatial 
definition of conducting layers has been achieved that would not otherwise be feasible 
using drilling alone or through any other remote techniques.  The unusual processes 
associated with groundwater salinisation means that the whole methodology is unlikely to 
have wide application, although the individual components have wider applicability.  Areas 
with underlying regional sedimentary aquifers will tend to benefit from geophysics applied 
to assets such as a water resource.   
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INTRODUCTION 
This report is one of a series of final site reports summarising results for the South 
Australian Salinity Mapping and Management Support Project (SA SMMSP). With 
investment provided by the Australian and South Australian Governments under the 
National Action Plan for Salinity and Water Quality (NAP), the project had the following 
aims: 

• to test airborne geophysical techniques (in particular electromagnetics [EM], 
radiometrics, and magnetics) to determine their value in application to salinity 
management, 

• to further refine and adapt the technology to suit this application, and 

• to provide specific information to assist with salinity management in five key areas 
of South Australia. 

The SA SMMSP has adopted a pioneering approach compared to traditional research 
programs involving the acquisition of geophysical data. Instead of accepting data collected 
in an arbitrary manner, which may add to knowledge but be of little use for management, 
considerable thought went into how the data generated could contribute to the 
implementation of salinity management options applicable at each site.  

By providing interpreted, appropriately targeted, spatial geophysical data and associated 
decision support tools, the program seeks to reduce the impacts of salinity on land, 
surface water quality, groundwater quality and biodiversity.  

Advancing considerably on existing knowledge, the outputs of the SA SMMSP offer: 

• Detailed knowledge of the distribution and causes of dryland and irrigation-induced 
salinity. 

• Potential land and water management solutions, using a multidisciplinary 
approach. 

• Salinity and materials mapping, and on-ground calibration information, which will 
enable regional bodies to develop and refine their respective Integrated Natural 
Resource Management (INRM) Plans. 

• More effective targeting of planning controls, development incentives, trading 
schemes and protection zones in INRM plans and subsequent investment under 
NAP. 

• Identification of both current and future impacts of salinity on natural ecosystems, 
and biodiversity assets at risk. 

 

This report describes the component of the program conducted at the Tintinara site, one 
of 5 study areas in the SA SMMSP.  These sites were chosen on the basis of priority for 
salinity management as well as representing a range of different landscapes, assets at 
risk, potential management options and maturity of regional planning.  All the sites are 
shown in Figure 1.  Apart from the Tintinara site, 3 of the study areas were in the western 
Murray Basin (Riverland [Lock3 to Border], Angas-Bremer Plains, and the Bremer Hills) 
with one in the mid-North (Jamestown). 
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In the Tintinara region, the lack of surface water means that the groundwater resource is 
an important asset.  However previous studies have shown that the groundwater resource 
will become more saline over the next 100 to 200 years, as a result of clearing for non-
irrigated agriculture.  The growth in irrigation in the area has hastened this process and 
increased the need to consider planning processes to maximise the lifetime of the 
resource.  To the west of the area, rising water tables have adversely affected the 
remnant vegetation. 

 

 

Figure 1. Location of the Tintinara site: east (mallee highlands) and west (coastal 
plain); inset: the 5 study areas. 

The aim of this report is to summarise the study and main findings from the Tintinara site.  
Issues of extrapolation to other groundwater resources are also discussed.  Similar 
reports have been written for each of the other study areas and a final report exists for the 
overall program. The report is divided into 4 parts, reflecting the staged approach taken 
throughout the SA SMMSP, comprising: 

A. Discussion of the resource management issues 

B. Definition of the role and capabilities of airborne geophysics in addressing these 
issues 

C. Developments in modelling and decision support tools 
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D. Assessment of the lessons and outcomes of the project on future management 
decisions 

The Tintinara site was divided into 2 parts (East and West) where different salinity issues 
were to be investigated (as outlined in Part A to follow).  

 

Contracted objectives were to: 

(iii) Map the shallow clay within the Tintinara East region and adapt tools to use this 
information to predict the impact of land management decisions on quality of the 
underlying groundwater resource. 

(iv) Map zones of groundwater salinity on the Coastal Plain (Tintinara West) and use 
this information to study salinity impacts on native vegetation. 

 

Contracted outputs included: 

For Tintinara East (Mallee highland): 

• A map of the clay across the main area of concern, as inferred from the EM 
conductance map and on-ground calibration 

• Improved estimates of salt loads to the groundwater using the additional 
information from geophysics and drilling. 

• Improved groundwater model of the area, incorporating the high resolution data 
obtained from the geophysics together with improved recharge data. The 
groundwater model is currently being used for water allocation planning. 

For Tintinara West (Coastal Plain): 

• Identify associations between vegetation health and salinity.  

----------- And during the course of the program another output was derived: --------------- 

• Define areas of shallow basement rock. 
 

A number of detailed reports for the Tintinara site have been compiled under the SA 
SMMSP.  Further information can be found in these reports: 

• Brodie, R.C., Green A.A., and Munday, T.J. 2003. Calibration of RESOLVE 
airborne electromagnetic data, Riverland and East Tintinara, South Australia.. 
CRC CRC LEME Open File Report 173, Cooperative Research Centre for 
Landscape Environments and Mineral Exploration, December 2003. 

• Cook, P.G., Leaney, F.W. and Miles, M.  2004. Groundwater recharge in the north-
east Mallee region South Australia, CSIRO Land and Water Technical Report No. 
25/04. 

• Cowey, D., Garrie, D., and Tovey, A.  2003. Riverland and Tintinara, South 
Australia - RESOLVE Geophysical Survey, Acquisition and Processing Report. 
Report to the Bureau of Rural Sciences (available from Geoscience Australia), 
Fugro Airborne Surveys. 
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• Camp, A. 2003 Salinity and Native Vegetation Health – Tintinara and Angas-
Bremer Plains, South Australia. Department of Water, Land and Biodiversity 
Conservation. 

• Leaney, F., Barnett, S., Davies, P, Maschmedt, M., Munday, T. and Tan, K. 2004.  
Groundwater Salinisation in the Tintinara Highland Area of SA:: Revised estimates 
using spatial variation for clay content in the unsaturated zone.  CSIRO Land and 
Water Technical Report No. 24/04.  January 2004. 

• Osei-Bonsu, K., Barnett, S., Leaney, F. and Davies, P. 2004. Modelling 
Groundwater Salinisation in the Tintinara Highlands area of SA, Department of 
Water, Land and Biodiversity Conservation, DWLBC Report 2004/ 44 (In Press). 

• Tan, K.P, Munday T.J. and Leaney, F. 2004. The validation of RESOLVE 
helicopter EM data: Mineralogical and petrophysical results from field 
investigations for the Tintinara East survey area, in the south east of South 
Australia. CRC LEME Open File Report 174. Cooperative Research Centre for 
Landscape Environments and Mineral Exploration, September 2004. 
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PART A. RESOURCE MANAGEMENT ISSUES 

1. Groundwater Salinisation in the Tintinara East / Mallee 
Highland Region 

Increasing concentration of salts in groundwater can be as much a limitation to 
groundwater resources in semi-arid and sub-humid areas as the over-extraction of 
groundwater (i.e. removing more water than is being replenished).  Increasing 
groundwater salinity is caused by mobilisation of salt into the fresh aquifer.  Most often, 
salinisation of groundwater is caused by saline groundwater from above, below, or to the 
side being entrained into the fresh aquifer by groundwater extraction.   
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Figure 2. Location of the study site with sites where cores were collected during 
this and previous field investigations. 

However, previous studies (Cook et al, 1993; Leaney and Herczeg, 1999; Leaney et 
al.1999) have shown that another mechanism operates in the southern Mallee 
groundwater resources, such as in the Tintinara area.  In this case, the fresh groundwater 
resource (Murray Group Limestone aquifer) was recharged during a wetter period ~ 
20,000 years ago.  The lack of surface water resources in the area makes this an 
important regional asset.   

The lower rainfall over the last 20,000 years has allowed plant roots to concentrate salt in 
the soil so that now large stores of salt exist in the deep Mallee soils.  This store of salt 
forms a natural hazard.  Increased recharge caused by clearance of native vegetation has 
led to leaching of these salts into the fresh aquifer and increases in the salinity of the 
groundwater.  The recent increase in irrigation using groundwater has exacerbated this 
problem.  In some areas the groundwater might be unusable for irrigation within the 
vicinity of the development activity within as little as ten to twenty years, and could lead to 
more general deterioration over the next 50 to 200 years. 
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The increased recharge under non-irrigated conditions also leads to rising water tables, 
but the water tables are sufficiently deep for land salinisation not to be a problem except in 
the very western areas.  The extraction of groundwater for irrigation means that in 
irrigated areas, water tables should fall, but water quality will become an issue well before 
the groundwater store is depleted.  Thus, salinisation of groundwater is the major risk to 
the water resources in the area. 

There is now evidence of the water levels in some piezometers outside the main irrigation 
developments rising due to the increased recharge, others are falling due to the 
groundwater extraction, and for shallow piezometers, there is evidence of increasing 
salinity levels.  There is also evidence of soils ‘wetting up’ and salt being leached in the 
soil profile.  The question is not ‘if’ salinisation will occur, but ‘by how much’ and ‘when’.   

Both the magnitude and timing of salinity process will vary across the region, and any 
management will need to focus efforts on areas at greatest risk.  There may be a need to 
encourage new irrigation developments away from these areas or improve irrigation 
efficiency in order to provide more security of the groundwater resource.   

While the processes are understood, there is still a lack of sufficient data on the spatial 
patterns of these processes for land use planning for groundwater sustainability 
objectives.  Better information about these spatial patterns will allow more reliable and 
detailed predictions of what management options are appropriate and the likely outcomes 
at various scales and over a range of times into the future. This in turn gives land 
managers confidence that their management choices are appropriate, which is particularly 
important in situations where the observed response of the groundwater system might be 
many years after the strategy is implemented. 

Table 1 lists the factors that affect these spatial patterns.  It can be seen from this Table 
that 2 key datasets are: 

• Distribution of surface soils (0-2m depth), which affects the magnitude of the 
impact through soil salinity and timing through deep drainage rates under both 
non-irrigated and irrigated crops, and 

• Distribution of sub-surface soils (2m to water table), which affects the magnitude of 
the impact through the size of the salt store and the timing through the size of the 
soil water store. 

It should be noted that effects could be contradictory.  For instance, the presence of 
heavier (more clayey) sub-soils will increase the store of salt, but will slow down the 
leaching of this salt.  A sandier sub-soil may lead to salinisation occurring more quickly 
(say 20 years), whereas the magnitude of the impact will be greater under heavier soils, 
albeit slower (say 50 years).   

Information on the texture of surface soils was provided through soil landscape mapping 
(1:100,000 scale) by the Soil and Land Information Group of DWLBC.  They have collated 
data on proportions of defined associations of soils within each soil landscape unit.  
Unfortunately, information on sub-surface soils is much more sparse.  Bore log data has 
provided only very general maps of the distribution and thickness of sub-surface clays, the 
resolution of which is insufficient for planning purposes.   

Hence, the objective of this component of the study is to use airborne geophysical 
techniques to map the shallow clay within the Tintinara region at sufficient resolution and 
then to adapt planning tools to use this information. 
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Table 1. Factors that lead to regional variations in the magnitude and timing of 
salinity impacts: 

– Magnitude – 
(i) Size of the store of salt in soils.  This is dependent on the salinity of soil water 

and the volume of soil water.  Previous studies have shown that the salt 
concentration in the Mallee soils in this region is weakly dependent on the texture 
of surface soils varying from 14,000 mg/L soluble salts for sandy soils to 28,000 
mg/L for clayey loams.   

(ii) Volume of groundwater, with which it mixes.  This is a difficult parameter to 
assess until salinity processes become more evident. 

 
– Timing – 
(iii) Increase in deep drainage to leach the stored salt.  Deep drainage under non-

irrigated agriculture has been found in field studies to be dependent on the texture 
of the surface soils, being higher for sandy soils.  Empirical relationships have 
been developed from these field studies.  Deep drainage under irrigated agriculture 
is dependent on the irrigated crop, irrigation management and the soil texture.  

(iv) Depth to water table.  Depth to water varies from around 23-27m (OBSWELL 
bores MKN 008 and MKN 011, June 2004) in the west, to around 56m (OBSWELL 
bore SHG005, June 04) in the east.   

(v) Store of water in the soils.  The volume of soil water is strongly dependent on the 
depth to water table and the texture of the soils to the water table, increasing as 
the soils become more clayey.  

(vi) Any impedances to salt mobilisation into the aquifer being used.  There are 
no impeding layers between the limestone aquifer from which groundwater is 
extracted, although towards the Victorian border, this changes 

 

 

2. Coastal Plain (Tintinara West) 
The target for the geophysics for the western study area was the salinity of the shallow 
groundwater.  Better knowledge will underpin groundwater management in order to: 

• avoid unnecessary degradation of the resource through increases in groundwater 
salinity, and  

• better understand the factors leading to decline in vegetation health.   

The location of the survey area is shown in Figure 1 and a 3-D conceptual model of the 
groundwater systems is shown in Figure 3. 
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Figure 3. Conceptual model of groundwater systems underlying the Coastal Plains 
(Tintinara West) study area. 

Groundwater flow, for both the unconfined and confined aquifer systems, originates from 
the topographic high of the Dundas Plateau located in western Victoria.  From there, the 
groundwater flows westward beneath the study area toward the coast.   

2.1 GROUNDWATER SALINITY PATTERNS - COASTAL PLAIN 

The salinity of the groundwater increases to the west of the western study area and is 
associated with shallow water tables.  This higher salinity determines the western limit of 
the unconfined groundwater resource, although some irrigation from the confined aquifer 
occurs further west.   

Irrigation for lucerne has led to pronounced irrigation recycling and associated increases 
in groundwater salinity.  To the west of the area, rising shallow water tables have led to 
increasing evidence of land salinisation and decline in vegetation health.   

2.2 VEGETATION HEALTH RISK – COASTAL PLAIN 

NLWRA (2001) showed that large areas of remnant vegetation were vulnerable to salinity 
and waterlogging caused by rising water tables.  Many of these areas are fragmented, 
which makes them also vulnerable to a number of other risks.  This component of the 
project aimed to assess salinity stress in remnant vegetation stands on the Coastal Plain 
and develop methodologies to predict areas of native vegetation at risk of salinisation into 
the future. 
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PART B. ROLES AND CAPABILITIES OF THE AIRBORNE 
GEOPHYSICS 

3. Airborne geophysics technologies and potential targets 
One of the prime objectives of the SA SMMSP was to assess the usefulness of airborne 
geophysics as an information gathering tool to be applied in addressing salinity and water 
quality issues.  Four distinct geophysical techniques were employed, throughout the five 
key sites, each providing different but complimentary information.  Variations and 
combinations of the techniques also provide the means to deliver a tailored approach to 
each particular investigation. The main features of the techniques are summarised in the 
box on the next page. 

Airborne electromagnetics (AEM) can be used to define 3-dimensional conductivity 
structures of a region to describe the salt-water-materials relationships in terms of their 
defining electrical conductivity signal. This can potentially spatially define high (and low) 
salinity groundwaters and zones of high (and low) salt load. It may also indicate sub-
surface variability in materials, specifically the clay: silt: sand contribution.  AEM requires 
careful calibration to determine the relative contribution of conductive materials, but is the 
only geophysical technology that has the potential to map salt load directly in the sub-
surface with good vertical resolution. 

Radiometrics can give a spatially precise picture of soil and rock variability across a 
landscape. Flood plain, or alluvial sediments can be contrasted with the coarser slope, or 
colluvial, deposits and the bedrock on ridges. 

Magnetics detects the presence of iron-rich minerals which are commonly associated 
with older sub-surface drainage lines – palaeochannels – that may act as conduits for 
groundwater flow. Geological structures (eg. faults, dykes, etc) are also often emphasised 
using this technology.  

Altimetry / Elevation information is required to process the geophysics data but also can 
be of great value in helping to understand and / or model landscape processes.  

3.1 LIMITATIONS 

Airborne geophysical techniques have 3 significant limitations: 

1. All surveys represent a snap-shot in time of the geophysical properties of the 
landscape. As such, they are only an approximate indication of the average ambient 
conditions across a region and the observations must be carefully evaluated with 
respect to their position in time and relative to ambient climatic conditions. 

2. Careful, systematic and accurate ground-truthing, or calibration, is a vital pre-requisite 
for realistic interpretations of the airborne geophysical signals. This will add a cost of 
at least as much as that required to fly the surveys. 

3. Each technology has its own strengths and weaknesses, and AEM, in particular, 
comes in a number of guises, each with peculiarities that allow it to be tailored to 
address the most prevalent issue for a given area. Forward modelling, or scenario-
testing, is a useful exercise that should be carried out on dummy data sets 
representative of conditions expected to be met over the real survey.  
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Airborne Geophysical Technologies 
 
AIRBORNE ELECTROMAGNETICS (AEM) 
A pulse of EM radiation is emitted from the aircraft which interacts with 
conductive material in the ground. A modified, secondary signal  
‘bounces’ back to a towed receiver that collects parcels of data in 
either time or frequency domains. These signals can then be 
modelled, or ‘inverted’, to define the 3-dimensional conductivity 
structure of the survey area. From the electrical conductivity signals 
and appropriate ground-truthing, the relative composition of salts, 
water and materials in the profile can be defined. Potentially, this can 
spatially define high (and low) salinity groundwaters and zones of high 
(and low) salt load. It may also indicate sub-surface variability in 
materials, specifically the clay: silt: sand contribution.  
Vertical reliability and resolution is strongly dependent on the 
modelling routines used to convert the raw data into depth images and 
this is highly constrained by the interpretation of drill-hole data and 
pre-conceived ideas about the landscape and nature of the sub-
surface (e.g. Hunter, 2001; Christensen, 2002). Interpreted data must, 
therefore, be treated with extreme care. 
 
RADIOMETRICS (GAMMA) 
Radiometrics detect the natural gamma radiation signal given off by near-surface (< 30cm) 
materials and can give a spatially precise picture of soil and rock variability across a landscape. 
The relative amounts of radioactive elements, namely potassium (K), uranium (U) and thorium (Th), 
are indicative of source minerals and hence soil and rock-types. This can help contrast regions of 
differing clay, silt and sand compositions. The 
ratio of different gamma intensities can give 
clues to a landscape’s development. For 
example, potassium depletion may indicate an 
older and hence thicker weathering profile which 
may be correlated with elevated salt loads 
(Wilford, et al., 2001). It should be noted, 
however, that, with existing technology, 
radiometrics can not measure salt directly. 
 
MAGNETICS  
Airborne magnetics detects the subtle variability in the earth’s magnetic field caused by the 
presence and absence of ferromagnetic minerals such as magnetite (Fe3O4), maghemite (�-
Fe2O3), pyrrhotite (FeS) and ilmenite (FeTiO3). These minerals are commonly associated with 
stream-bed deposits and have been used elsewhere (e.g. to the north around Jamestown (Wilford, 
2004) and to the east across Honeysuckle Creek, Victoria (Cresswell, et al., 2004)) to pick-out sub-
surface drainage lines – palaeochannels – that may act as conduits for groundwater flow 
(Cresswell, et al., 2004). Further, these minerals are common in many igneous rocks, both as 
primary and secondary minerals, and can often be used to depict geological structures (eg. faults, 
dykes) in the sub-surface from discontinuities seen in the airborne images. 
 
ALTIMETRY 
As a necessary by-product of flying the other 3 geophysical techniques, a precise digital elevation 
model (DEM) is generated from the radar and laser altimetry used to precisely locate the aircraft 
above the ground. The resolution is a function of the spacing of the flight lines and the signal repeat 
time, but generally this results in a spot measurement taken every 10m along the flight path, with 
flight paths 100m apart for the combined radiometrics and magnetics survey and between 100 and 
400m for the AEM survey. The resultant data is interpolated to give an exact surface on which to 
“hang” the other data sets and provide a surface reference for other studies. The DEM also often 
gives new insights into the evolution of landforms and landscape relationships (Gibson, 2004). 
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Bearing these limitations in mind, airborne geophysics provides a suite of powerful tools 
that can give un-paralleled insights into landscape form and function, providing a quasi-
continuous image of ground conditions and hitherto unprecedented spatial analysis of 
fundamental environmental features. Used without due diligence, however, the data can 
also give misleading, or even quite erroneous, results. 

3.2 CHOOSING THE RIGHT TECHNIQUE 

Given the relatively focussed nature of the investigations at Tintinara and the ability of 
airborne EM to detect both salinity in groundwaters and sub-surface clays, this was the 
only technique employed.  Only recently did the project team become aware of the 
availability of coarse radiometric data. 

4. Mapping Sub-Surface Clay – Tintinara East (Mallee Highland)  
Airborne EM was flown across the area, targeting the sub-surface clay.  Table 2 lists 
some of the key geophysical information related to the eastern Tintinara site.  The dataset 
most sensitive to 8-10 m depth range, which corresponds to the sub-surface clay, is 
shown in Figure 4.  Electromagnetic induction can detect clay both because of its inherent 
conductivity characteristics and the additional water (and hence salt) found in clayey soils.  
The expectation is that the red areas represent areas of clay for this depth range.   

Table 2. Key geophysics information – Tintinara site 

(i) For the Tintinara site, a helicopter-borne, fixed frequency electromagnetic induction 
device (RESOLVE) was flown with a line spacing of 300m.   

(ii) Electromagnetic induction measures the conductivity of the earth is under the flight 
path.  The bulk conductivity of the earth depends on a number of factors, but 
particularly the amount of water, the salinity of that water and the amount and type 
of clay.   

(iii) A fixed frequency device measures some average of this property over depth with 
lower frequencies operating at greater depth.   

(iv) Fixed frequency devices can allow greater sensitivity to near-surface properties 
than with the other main form of EM induction (time domain).  Despite this, the top 
1-2 m is outside the limits of detection and hence not used to map surface soils.  
The EM induction technique can also be used to estimate the salinity of the 
groundwater, although there is good information on this already.  This groundwater 
data was used in the inversion of the geophysical data in order to limit the number 
of parmeters being derived in the inversion process. 

(v) The line spacing determines the spatial resolution of the end-product with a 
general rule-of-thumb that to detect a feature that is 600m wide requires a line 
spacing of 300m.   

(vi) A by-product of the geophysics flights is a high-resolution digital elevation model 
(DEM), to within a metre height. 
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Figure 4. RESOLVE® HEM [Helicopter-borne EM] bulk conductivity for the depth 
interval 8-10m below the surface. The locations of drill holes used to 
validate the observed conductivity structure are also shown (Leaney et 
al., 2004). 

A number of sites were drilled (see Figure 4) to test whether these high conductivity zones 
actually corresponded to clays.  An example is shown in Figure 5.  As can be seen, 
elevated conductivities (4th column) are strongly correlated with percentage of clays within 
the sediment (1st column).  This has been found true for the test-sites, as a whole 
(correlation coefficient, r = 0.88).  These results also confirm that the airborne data should 
be most sensitive to the distribution of clays within the top 30 m. 

4.1 DETERMINING CLAY THICKNESS 

The RESOLVE® HEM [Helicopter-borne EM] survey generates data responses in the 
frequency domain, with lower frequencies penetrating deeper to characterise deeper 
materials. The process of converting this data into something representing variations in 
material properties with depth is called an inversion.  To give the inversion process some 
meaning, the data is applied to a model of the sub-surface, often comprising of discrete 
geological layers with known parameters described.  This constrains the output to agree 
as much as possible with what is known of the sub-surface.   

The resulting map of clay thickness, as determined through this inversion of the AEM data 
is shown in Figure 6.  This represents the first contracted output for this site.   
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Figure 5. Borehole geophysical, textural and soil-water chloride data for bore 6HC 
(location shown in Figure 2).  Log shows thick sequence of clays with an 
elevated bulk conductivity (Leaney et al., 2004). 

 

Figure 6. Map of the clay thickness derived from the constrained 1D Layered Earth 
Inversion (LEI) of RESOLVE HEM data. (This is the direct equivalent of 
Layer 2 in the inversion.) (Leaney et al., 2004) 
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To determine the reliability of this map, the inferred clay thickness was compared with that 
derived from 53 drill-logs.  In Figure 7, blue circles define the relationship between 
drillhole data from the DWLBC drill logs and the inversion result (r2=0.47).  The 
relationship defined by the red circles (r2=0.8) is that determined for recent targeted 
drilling undertaken by CSIRO L&W, DWLBC and CRCLEME. In this exercise, greater care 
was taken in the geological logging of drillhole cuttings, with particular emphasis on 
detailing the true extent of the near surface clay-rich sedimentary units.  

The errors associated with the process are summarised in Table 3.  The wide scatter in 
the relationship shown by the blue dots is likely to reflect a combination of factors 
including the poor definition of clay-rich units during drilling, difficulties in correlating 
results from a drillhole with the average response from the helicopter having a footprint of 
between 30-50m, and errors associated with the underlying assumptions made in the 
inversion of the HEM data.  Even so, the data from the blue dots show that where the clay 
thickness, was inferred to be greater than 4 m thick, the drill-logs supported this.  On the 
other hand, where the thickness was inferred to be less than 4m, the range of thicknesses 
reported in the drill-logs varied up to 12m.  If the dataset is restricted to the carefully 
logged bores represented by the red dots, the relationship suggests that the thickness of 
Layer 2 from the constrained inversion of the HEM data is a reasonable surrogate for the 
thickness of clay in the Tintinara East study area. 
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Figure 7. Relationship between clay thickness from drillhole data and clay 
thickness estimated from the constrained inversion of the helicopter EM 
data.  



 

SA SMMSP Tintinara Summary 15 Report DWLBC 2004/ 36 

Table 3. Potential errors in mapping clay thickness 

(i) Inversion: The main error introduced by using an air-borne EM device, rather than 
a down-hole device is in the inversion process:  To obtain the bulk conductivity at 
different depth intervals requires interpretation of measurements taken at different 
frequencies.  This process, called inversion, introduces its own errors even if 
measurements at some frequencies are sensitive to the conductivity at the desired 
depth interval.  In this case, the sediments are assumed to consist of 4 layers of 
constant conductivity (a near-surface layer, a sub-surface clay layer, another sandy 
layer and the limestone aquifer).   

(i) Footprint: This is the main error in comparing data from air-borne devices with 
drill-log data.  The air-borne device averages over a given area; the so-called 
‘footprint’.  In comparing data from drilling with that of air-borne EM, we are 
comparing data at a single point with that averaged over an area.   

(ii) Positioning errors: due to errors in location. 

(iii) Definition of a clay: Drillers’ logs are often reliant on field interpretation.  
Reinvestigating drill-logs showed that drill-logs, especially from old drill-sites can 
often be erroneous. 

(iv) Wrong Assumptions: While for detailed sites, the conductivity was sensitive to 
clay, but this may not be true for some areas e.g., if salinity of soil-water showed 
greater contrasts.   

It is unclear why the errors are so large for lower conductivity readings.  The lower inferred 
thickness reflects that this layer only represents a smaller fraction of the overall 
conductivity reading and hence may be prone to error.  Also, thinner clays may vary over 
small distances, making the ‘footprint’ error larger.  However, the only explanations for a 
12 m thick clay layer having a small EM reading is that the soil water was not saline, the 
drill logs wrongly logged the clay or the area of thick clay was only small. 

 

4.2 IMPROVED UNDERSTANDING OF GEOMORPHOLOGY 

The spatial pattern of clay thickness clearly shows linear features running NNW.  If these 
linear features could be related to an understanding of the geomorphology of the region, 
there perhaps can be a greater confidence in the overall patterns than in the individual 
point data.   

Some effort was placed into better understanding the processes of ancient landscape 
formation and how the sedimentary profile has built up over time. Table 4 provides a brief 
description of the geomorphology and shows that the linear features may relate to an old 
dunefield with clay between these dunes.  This dune field has since become covered with 
other material, including a more recent dune field with a completely different orientation.  
We would therefore expect reasonable confidence in predicting these linear features, 
which would generally correspond to clayey or sandy profiles, although there may be 
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some variation within each of these features.  This is re-emphasised in the cross-section 
shown in Figure 9. 

Table 4. Brief discussion of geomorphology for the area 

The geomorphology of the region is illustrated in a block diagram in Figure 8.  The main 
aquifer used for groundwater extraction is the Morgan limestone.  For our area of interest, 
the water table resides in this Formation.  Above this is the Loxton-Parilla Sands, which 
were formed as the ocean retreated south-westward.  As the shoreline retreated, the 
primary dune was stranded.  Behind this would have been a lagoonal feature corresponding 
broadly to today’s Coorong.  Therefore, the recession of the shoreline left behind a series of 
parallel strandlines with clayey deposits nestled between the dune features.  These NNW 
trending dunes are almost perpendicular to contemporary dunes, which mainly run east-
west across the area.  We would therefore expect reasonable confidence in predicting these 
linear features, which would generally correspond to clayey or sandy profiles, although there 
may be some variation within each of these features.   

Figure 8. Block model of RESOLVE Interval conductivity for 8-10m draped on 
topography, with a geological interpretation of the observed conductivity 
structure (Leaney et al., 2004). 
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Figure 9. 1D Layered Earth inversion stitched section from the constrained 
inversion of one flight line running east-west. Clay rich sediments (the 
more conductive unit) occupy inter-barrier depressions and, in places, 
are in excess of 30m (Leaney et al., 2004). 

This data on the spatial patterns and thickness of clay rich units across the Tintinara East 
study area was then applied to models used to predict rates of recharge and salinisation 
of the groundwater resource. Results from these models are further discussed in Part C. 

5. Findings on the Coastal Plains (Tintinara West) 

5.1 MAPPING GROUNDWATER SALINITY 

Figure 10 depicts the latest observed groundwater salinity distribution in the Tintinara 
area, with the irrigation areas also shown.  The circular areas represent centre pivot 
irrigation of lucerne where application rates range from 5 – 7 ML/ha.  The rectangular 
areas are where flood irrigation occurs, with much higher application rates in the range of 
10 – 12 ML/ha.  The increases of groundwater salinity, associated with recycling of salt 
contained in irrigation drainage water, is evident, especially beneath areas of flood 
irrigation.  The strong east-west salinity gradient can be seen in Figure 10, with centre 
pivot irrigation occurring with salinities below 3,000 mg/L, and flood irrigation using higher 
salinities. 

The flight details of the geophysics are similar in detail to that in the eastern study site.  
Those frequencies most sensitive to shallow depths should be responsive to groundwater 
salinity, although it should be noted that other factors will affect the signal. 

Results from the AEM survey are shown in Figure 11, and show a very good correlation 
with the previously observed salinity patterns, particularly in the areas of shallow 
watertable associated with salinised land to the west.  To the southeast, the “hot spot” 
beneath flood irrigation also appears to have been detected by the AEM. 
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Figure 10. Recent observed distribution of groundwater salinities (limestone 
aquifer) in the Tintinara region (Barnett, pers. comm.) 

 

Figure 11. Coastal Plains (Tintinara West) Apparent Conductivity from the near 
surface, as measured by electromagnetic induction techniques. 
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5.2 ASSESSING VEGETATION HEALTH RISK 

The methodology adopted to determine connections between shallow saline 
groundwaters and stands of native vegetation at risk is outlined in Table 5. 

Table 5. Vegetation health methodology 

(i) 8 sites were developed, 3 (T6, T7 and T8) of which were in areas of higher 
groundwater salinity.   

(ii) At each of these sites were conducted: botanical surveys, visual health 
assessments, chlorophyll fluorescence assessments of plant stress, soil sampling 
for salinity and isotopes, leaf ion measurements of salt accumulation within the 
plant and measurements of groundwater level.   

(iii) The vegetation health at each site was compared with a number of risk factors 
including depth to groundwater, soil and groundwater salinity.  No obvious 
correlations were found.  Different health assessment methods appeared to be 
contradictory, 

(iv) Native vegetation at risk of salinity were mapped using a combination of shallow 
water tables and high groundwater salinity. 

 

There were a number of indicators at 3 of the sites that the stands of native vegetation 
were under stress from rising water tables.   

However the monitoring was too short to detect any trends for some types of stress 
measurements.  Surpisingly, there appeared to be little correlation between measured 
vegetation health and risk factors such as water table depth, groundwater salinity or soil 
salinity.   

The area of remnant vegetation overlying areas of shallow saline water tables was 
estimated to be currently around 605 ha (Camp, 2003).  Predictions were that increasing 
salinity will impact a further 2 ha in 50 years and an increase of 51 ha on current levels in 
100 years.  While the spread of salinity is not predicted to be large, rising salinity levels 
will intensify the stress on already salt affected vegetation.  Areas affected and at risk are 
also low because of the large areas of remnant communities already cleared for 
agricultural development, and because significant areas already have quite shallow 
watertables. 

The map showing areas of native vegetation superimposed on land currently affected and 
at risk of salinity is shown in Figure 12. 
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Figure 12. Areas of native vegetation overlain on land currently affected and at 
future risk of salinity (Camp, 2003). 
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5.3 DETECTING BASEMENT ROCK 

In areas where the unconfined limestone aquifer is saline, the deeper confined aquifer is 
the only source of stock and domestic supplies.  This aquifer wedges out against rising 
shallow granitic basement to the west of the survey area.  Following a request for 
assistance from a driller who unexpectedly hit shallow granite south of Tintinara, the AEM 
data was processed to give a 40 – 50 m slice (Figure 13).  One of these highly resistive 
dark blue areas correlates with the abovementioned drill hole and these almost certainly 
indicate areas of shallow granite. 
 

 

 

Figure 13. Conductivity depth interval for the depth range 40-50m below the ground 
surface, indicating areas of shallow granite (resistive basement highs).  

The image depicts a conductive (saline) unconfined groundwater system (areas shown in 
red), with resistive highs representing areas where the underlying Early Palaeozoic 
granite is present at depth (See Figure 14 below). Deep drilling for groundwater in the 
confined Tertiary aquifers should avoid these areas.  
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Figure 14. Geological section across the Tintinara West area (see Figure 13), 
indicating how the basement granitic rocks form basement highs which 
intrude into the tertiary aquifers.  
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PART C. DEVELOPMENTS IN MODELLING / DECISION SUPPORT 
TOOLS 

6. Modelling / Applying the data to decision support tools – 
Tintinara East 

Information, provided by the helicopter EM survey, on the spatial patterns and thickness of 
clay rich units across the Tintinara East study area was applied to models used to predict: 

• rates of groundwater recharge. 

• rates of salinisation of the groundwater resource (Murray Group Limestone 
aquifer) under dryland and irrigated scenarios. 

6.1 PREDICTING SALINISATION PROCESSES UNDER DRYLAND AGRICULTURE 
A model was developed within an ARCINFO Geographic Information System (GIS) in 
order to predict the amount of recharge occurring under dryland agriculture as well as the 
amount of salt being mobilised to the aquifer.  This represents the second contracted 
output and will be used as input to the groundwater models described later.  Some further 
details of the model are provided in Table 7. 

Table 6. Brief description of the Dryland Model 

The model consists of a number of components: 

1.  Estimating deep drainage under dryland agriculture through the following steps: 

a. Using previously developed correlation of deep drainage with surface 
texture based on previous field measurements to relate point 
measurements to mapped soil landscape units.  Key dataset is correlation. 
See Leaney et al. (2004). 

b. Developing map of deep drainage using the mapped soil landscape units 
and spatially averaging over soils in each mapped unit.  Key dataset is 
1:100, 000 scale  DWLBC Soil Landscape Mapping. 

2.  Recharge maps have been developed using the following methodology:  

a. It is assumed that all deep drainage will eventually become recharge.  Key 
dataset: deep drainage map from component 1. 

b. Change in soil water storage estimated.  Key datasets: Soil water 
database, Clay thicknesses derived from geophysics and DWLBC depth to 
groundwater map. 

c. Time delays between land use change and impact on water tables at any 
given point were estimated using the method of Cook et al. (2004) 
developed within the SA SMMSP.  Clearing for agriculture is assumed to 
have taken place in 1960.   
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3.  Estimating salt flux 

a. Estimation of salt storage: Estimates of soil water storage from step 2. 

b. Salt flux derived from recharge rate (component 2) and soil salinity 
estimates until entire salt storage has been leached. 

 

The map products, illustrating estimates of spatial variation in deep drainage, salt flux and 
cumulative salt input, are shown in Figures 15 - 19.  For this report, deep drainage is the 
amount of water percolating below the root zone (assumed to be within 2m of the 
surface).  It is assumed that all of the deep drainage will become recharge - i.e. the 
amount of water input to the aquifer of interest.  However, because of the long time delays 
between a change of land use (e.g. clearing) and the impact on groundwater, we need to 
map the recharge at various dates since most of the clearing took place (1950’s).  The 
time delays are longer towards the east, where water tables are deeper.  On top of this 
east-west trend, there are local variations due to variability of either the surface or sub-
surface soils.  The salt load maps do indeed show a trend of slower leaching to the east, 
on to which is superimposed a NNW pattern related to sub-surface soils and another 
pattern related to sandy soils.   

Drainage (mm)
68
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Figure 15. Estimated rates of drainage within the study region, under dryland 
conditions, based on the % clay content of sub-units of the Soil 
Landscape Units (SLUs) (Leaney et al., 2004).  
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Across the region, we have areas, where there is little evidence of salt having been 
leached in 100 years; while for others, all of the salt has been leached.  The map of 
cumulative salt shows how the total salt leached into the aquifer varies spatially.   

Across the region, we have areas, where there is little evidence of salt having been 
leached in 100 years; while for others, all of the salt has been leached.  The map of 
cumulative salt shows how the total salt leached into the aquifer varies spatially.   

There could be significant errors in these predictions if each component is analysed 
separately.  Confidence in the predictions is attained through comparisons with water 
table levels, groundwater salinity trends across the region and drill logs and as will be 
observed later matches appear to be good.  The degree to which the results are sensitive 
to the geophysical data can be observed through any NNW patterns in the maps.  Any 
errors, particularly for inferred sandy soils, will change the timing of impacts and the total 
amount of salt in the profile.  The importance of these errors will depend on the decisions 
made on the basis of early results.  This will be discussed in a later section. 
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Figure 16. Predicted salt flux for the study area in the year 2004 (44 years after 
clearing), under dryland conditions (Leaney et al., 2004). 
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Figure 17. Predicted salt flux for the study area in the year 2024 (64 years after 
clearing), under dryland conditions (Leaney et al., 2004). 
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Figure 18. Predicted salt flux for the study area in the year 2054 (94 years after 
clearing), under dryland condtions (Leaney et al., 2004). 
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Cumulative Salt at 2104 (g/m²)
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Figure 19. Predicted cumulative salt input for the study area in the year 2104 (144 
years after clearing), under dryland conditions (Leaney et al., 2004). 

6.2 SALINISATION PROCESSES UNDER IRRIGATION 

There has been a large increase in the amount of irrigation development in the region.  
Salinisation processes under irrigation are the same as under dryland farming, except for 
variation in two significant ways: 

• Rates of deep drainage are often much greater and hence processes occur much 
more quickly. 

• Irrigation contains salt from groundwater and this salt begins to recycle back to the 
groundwater. 

At present the area of irrigation is only a small fraction of the total area.  However it is 
unclear what areas will develop into the future, what crops will be irrigated and the style of 
irrigation management.  Hence, a salinity risk approach is used which indicates the likely 
risk attached if irrigation should immediately develop in any given area.  A deep drainage 
rate of 150 mm/yr is assumed.  Because this represents a relatively high estimate, the 
irrigation maps should be viewed as an upper estimate of impacts should irrigation occur.  
In interpreting the irrigation maps, one should note the deviation from the dryland 
predictions.  As described above, the dryland process will eventually leach all of the salt.  
The irrigation quickens these processes and will eventually lead to recycling of salt. 

Table 8 contains estimates for drainage in irrigated areas from previous work in the study 
area (Leaney, 2000 & 2001). Drainage estimates across the range of study sites varies 
considerably from 7-18 mm/yr at site 1 (2000) and site 2 (1999)) to in excess of 100 
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mm/yr at the other sites.  Clearly, drainage rates in irrigation areas are dependent on 
many variables. No individual variable stands out from the limited amount of data that is 
available except that drainage rates tend to be less when the irrigation area has been 
operated continuously for several years and the surface soils have greater clay content. 
From this limited data, drip irrigation, at least during the earliest stage of irrigation 
development, does not necessarily ensure lower drainage than for center pivot irrigation.  

Table 7. Drainage estimates, site details and irrigation practice in irrigated 
areas (from previous studies - Leaney, 2000 & 2001).   

Site Plant Irrigation Clay (%) Years 
irrigated  

Drainage rate 

   (0-2 m) (0-0.5 m) yrs mm/yr 
       

1 (2000) lucerne CP 28 11 15 7-18 
9 (2000) olives drip 30 8 1.5 130-420 

A (2001) olives drip 15 1 3 125-500 
C (2001) lucerne CP 22 5 2 125-500 
1 (1999) potatoes CP 23 10 2 210-275 
2 (1999) potatoes CP 42 47 15 12 

       

[CP =Centre Pivot] 

 

Figures 20 - 22 show estimates, over time, of spatial variation in salt flux and cumulative 
salt input to the groundwater resource (Murray Group Limestone aquifer) under an 
assumed irrigation drainage rate of 150 mm/year. 
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Figure 20. Predicted salt flux to the groundwater for the study area 20 years after 
the commencement of irrigation. (assuming uniform drainage of 150 
mm/yr) (Leaney et al., 2004). 
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Figure 21. Predicted salt flux to the groundwater for the study area 40 years after 

the commencement of irrigation (assuming uniform drainage of 150 
mm/yr) (Leaney et al., 2004). 
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Cum u lative salt after 80 years (g/m²)
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Figure 22. Predicted cumulative salt input for the study 80 years after the 
commencement of irrigation (assuming uniform drainage of 150 mm/yr) 
(Leaney et al., 2004).  

6.3 MODELLING GROUNDWATER PROCESSES 

To make decisions with respect to land use planning and groundwater sustainability, it is 
important to understand trends in key parameters related to the groundwater resource.  
These include: 

• Salinity of groundwater at different levels within aquifers, 

• Directions of groundwater flow, and 

• Groundwater levels. 

To relate recharge and salt flux to the aquifer, to these key parameters, we need to use 2 
types of groundwater models.  The first is a traditional groundwater model utilising 
MODFLOW.  This simulates the impact of recharge and groundwater extraction on water 
levels and groundwater direction.  The second is a groundwater salinity model, which 
determines the trends in water quality.  These are described in more detail in Table 9.   

The calibration process provides a comparison between long-term groundwater level and 
salinity data.  An example is shown in Figure 24.  Part of this good fit can be attributed to 
the calibration process.   The models also undergo a ‘validation’ process for the years 
1997-2004, during which irrigation development occurred.  However, the short duration of 
this period only tested some aspects of the model since there was insufficient time for 
some processes to occur.  
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Table 8. Brief details of groundwater models 

Groundwater balance model  

(i) A MODFLOW model was developed for the region, using the above recharge rates 
and compiled groundwater extraction rates.  The model was initially calibrated 
under steady-state conditions for pre-clearing recharge (prior to 1960).  The 
groundwater system was conceptualised as 5 layers (Pliocene Sands, 
Bookpurnong Beds, Murray Group, Ettrick Formation and Renmark Group).  It 
covered a larger area than the study area so a broader range of groundwater 
issues than salinisation could be considered. 

(ii) The model was then calibrated under transient conditions, using post-clearing 
recharge rates and records from 21 observation wells.  This enabled the model to 
simulate groundwater responses to extraction and increased recharge resulting 
from land clearance.  Good matches were found with observed data with 
reasonable calibration parameters. 

(iii) The model was ‘validated’ during the 1997-2004.  Groundwater extractions for the 
study area increased from 120ML in 1990/91 to 5135 ML in 2000/01.   

(iv) The model was run. 

Groundwater salinity model  

(v) An MT3D salinity model was developed for the region using the outputs from 
MODFLOW.  The model was validated for the 1997-2004 period and then a 
prediction scenario was run over the next 50 years for a comparison between 
dryland and current irrigation. 

 

Figure 23. Model extent and survey area (Osei-Bonsu et al., 2004). 
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Figure 24. Example data for calibration and validation of groundwater models:  (a) 
shows calibration against piezometric head; (b) is a validation test for 
the year 1997-2004, using the same parameters obtained from the 
calibration period.  (c) is the modelled change in groundwater salinity. 
(Osei-Bonsu et al., 2004) 

(a) 

(b) 

(c) 
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6.4 GROUNDWATER SALINITY PREDICTIONS – NO IRRIGATION  

Figure 25 shows the predicted trends in groundwater salinity in the Murray Group 
Limestone aquifer, for a number of observation wells in the area, in response to salt flux 
from non-irrigated (dryland) areas. The location of these bores is shown in Figure 27. 

Figure 26 shows the modelled spatial salinity patterns for 2004. 

Figure 27 shows the spatial changes in 50 and 100 years time.  As can be seen, the 
groundwater will change the status of beneficial use in many areas, i.e. from good quality 
irrigation water to marginal irrigation water quality to stock and domestic water.  The 
impact in the next 50 years will only be felt in the western part of the study area, whereas 
the impact is more widespread in 50-100 years. 

These increases in groundwater salinity will result in unsuitability for new vegetable 
irrigation (in areas not previously irrigated), in about 50 years time. Significant areas will 
not have groundwater suitable for domestic consumption in about 80 years, while lucerne 
irrigation in new areas and stock supplies will be able to be maintained indefinitely (Osei-
Bonsu et al., 2004). 

 

 

Figure 25. Predicted groundwater salinity trends for a number of observation bores 
under dryland conditions (no irrigation) (Osei-Bonsu et al., 2004). 
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Figure 26. Modelled spatial salinity patterns in the MGL aquifer in 2004. (Osei-
Bonsu, pers comm.) 

 

 

Figure 27. Modelled predictions for groundwater salinity in the MGL aquifer, under 
dryland conditions, in (a) 2054, and (b) 2104.  The location of the survey 
area (displayed here) is shown in Figure 23. (Osei-Bonsu, pers. comm.) 

(b) March 2104 

(a)  March 2054 
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6.5 GROUNDWATER SALINITY PREDICTIONS – WITH IRRIGATION 

The impact of potential irrigation activities on groundwater salinisation has also been 
modelled.  Estimated groundwater extraction rates since 1990 for the modelled area are 
shown in Figure 28.  The MGL aquifer provides about 88.5% of the total usage.  Within 
the smaller (airborne geophysics) study area estimated extractions increased from 120ML 
to 5135ML over the same period (Osei-Bonsu et al., 2004).  These figures indicate the 
rising trend in groundwater usage.  

 

Figure 28. Estimated groundwater extraction rates assumed for the irrigation 
scenario.  [RG = Renmark Group; MGL = Murray Group Limestone.] 
(Osei-Bonsu et al., 2004). 

New salt leaching figures were generated for the groundwater salinity model based on a 
spatially variable rate for irrigation drainage (where irrigation drainage was chosen to be 5 
times that of clearing induced drainage).  This was done to give greater account of the 
influence of variation in soil texture on drainage rates and provide continuity between 
leaching under dryland farming and the introduction of irrigated agriculture. 

Figure 29 indicates the predicted spatial changes to groundwater salinity under irrigation, 
in 50 and 100 years time. The green and yellow zones in this figure correspond to areas 
of high recharge and sandy soils where salinities beneath irrigated areas have reached 
over 5000 mg/L by 2050. However this is only a modelled output as, in reality, irrigation 
would have stopped as soon as salinities exceeded 3000 mg/L. 

The movement of plumes of salinised groundwater in a westerly downgradient direction 
from beneath irrigated areas (moving a maximum of about 500m after 50 years) can also 
be seen in Figure 29. The direction of groundwater movement may be modified by 
pumping in some areas.  This model may be used to refine the buffer distances currently 
enforced between new and existing irrigation (Osei-Bonsu et al., 2004). 
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Figure 29. Predicted spatial variability in groundwater salinity in the MGL aquifer in 
(a) 2054, and (b) 2104, in response to salt flux under uniform irrigation 
(Osei-Bonsu, pers. comm.). 

In addition, some different irrigation scenarios were modelled at selected sites to help 
understand the potential changes in groundwater salinity over time, directly under 
irrigation developments.  Three sites were chosen, each coinciding with the centre of a 
selected existing irrigation plot (locations are shown in Figure 27, 29): 

• OBS_1 – This site takes into account impacts since the beginning of irrigation in 
the area (irrigation started in 1993 at OBS_1).  Here summer irrigation is carried 
out every year. 

• OBS_2 – Summer irrigation is carried out every year, having commenced in 1999. 

• OBS_3 – Summer irrigation is carried out every 4 years, having commenced in 
1998. 

Modelling results at the 3 observation points (OBS_1, OBS_2 and OBS_3) allow a 
comparison of predicted salinity trends under alternative irrigated and dryland conditions.  
Figures 30-32 show simulated changes in salinity with time, in the MGL aquifer, at the 
three monitoring sites.  Differences in groundwater salinity under summer irrigation and in 
the absence of summer irrigation are substantial at all sites. 

(a)  March 2054 

(b) March 2104
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Without irrigation there is no net change in groundwater salinity at OBS_1 in 100 years.  
Salinity falls from about 2900 mg/L (in year 2004) to about 2400 mg/L (in year 2054) 
before rising to about 2900 mg/L (in year 2104).  Irrigation over a period of 100 years 
would lead to a net increase of groundwater salinity from 2900 mg/L in year 2004 to about 
3700 mg/L in year 2104. 
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Figure 30. Simulated groundwater salinity in the MGL aquifer at OBS_1 for dryland 
and irrigated agriculture (summer irrigation applied every year) (Osei-
Bonsu, pers. comm.). 
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Figure 31. Simulated groundwater salinity in the MGL aquifer at OBS_2 for dryland 
and irrigated agriculture (summer irrigation applied every year) (Osei-
Bonsu, pers. comm.). 

For OBS_2, without irrigation, salinity would increase only slightly from about 1900 mg/L 
to 2000 mg/L over 100 years. With irrigation, groundwater salinity would increase from 
1900 mg/L in 2004, peaking at about 11,000 mg/L (in 2051) before dropping down to 
about 5900 mg/L in 2104.  At the peak in salinity this groundwater becomes unsuitable for 
use as a stock and domestic supply. 
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Figure 32. Simulated groundwater salinity in the MGL aquifer at OBS_3 for dryland 
and irrigated agriculture (summer irrigation applied every 4 years) (Osei-
Bonsu, pers. comm.). 

At OBS_3, from a groundwater salinity of 900 mg/L in 2004, without irrigation this is 
expected to rise to about 2200 mg/L in 100 years.  With irrigation, groundwater salinity is 
predicted to rise from 900 mg/L to about 3400 mg/L in 100 years. 

The results indicate that the effect of irrigation is to change the salinity of the groundwater 
to the extent that it may change its use for irrigation.  This impact occurs over the next 25 
to 40 years.   

Existing observation wells are not able to detect the impacts directly beneath irrigation 
sites, however should the modelled sites (OBS_1, OBS_2 and OBS_3) be replaced with 
actual observation wells, these can be used to validate the model predictions in the future. 
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PART D. IMPLICATIONS FOR MANAGEMENT 

7. Transferability of the Techniques and Results 
The type of groundwater salinisation occurring in this region is somewhat unusual, 
although unlikely to be unique.  The combination of a fresh groundwater resource overlain 
by saline soil water will occur elsewhere, but it is unlikely that the results will be directly 
transferable to such areas. 

The techniques used here to detect sub-surface clay have been used in the Riverland and 
could be used elsewhere, where water tables are deep, there is sufficient contrast 
between the clay and other soils, the noise from soil salinity contrasts are not such to 
confound the signal from the clays.  It is imperative that on-ground work is done before 
using air-borne surveys to ‘prove’ that the target will be detected.  The modelling work 
done for the Riverland site showed the efficacy of fixed frequency devices for detecting 
shallow targets. 

Geophysical techniques should be suitable for detecting groundwater salinity contrasts for 
areas where salinity patterns may be complex, provided the signal from these contrasts is 
greater than the noise from regolith variability.  For regional groundwater systems, which 
tend to have a pan-cake structure, the spatial variability of the geological structure tends 
to be less significant than elsewhere.  Nonetheless, the salinity contrasts still need to be 
large to overwhelm the variability of materials. 

The application of geophysics focussed on an asset at risk rather than the aquifer as a 
whole.  We see this generally applying to regional sedimentary systems.  The pancake 
structure of regional sedimentary systems means that a drilling program will pick up many 
of the features of a regional aquifer, but may miss out on local variability.  Despite the high 
costs of flying, the importance of groundwater management in areas of high resource 
value will increase the likelihood of geophysics significantly adding value to decision-
making through detection of local variations in geological structure and water salinity.   

8. Lessons Learnt 
The objectives of this study have been achieved.  An additional objective related to the 
resistive basement on the Coastal Plain was achieved in response to an enquiry.  

Selection of sites for the vegetation health was the only logistical difficulty.  The short 
timeframe of the project meant that monitoring was required to begin before geophysical 
datalayers were available.  Consequently, 5 of the 8 field sites could have been better 
placed.   

For the Tintinara site, we were able to take advantage of the test site and pre-flight 
modelling in the Riverland.  This, together with the previous studies of Cook and Kilty 
(1992) gave a degree of confidence in the methodology despite no staging. 

The modelling had been specifically designed for the issues for the area.  The logic of the 
modelling based on recharge estimates and salt balances enabled the geophysical data to 
be used directly. 
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9. Future Work 
The models developed are ready for use.  Scenarios need to be developed to run with the 
model.  This would lead to a better understanding of the risks associated with various 
levels of development, siting impacts and inefficient irrigation practices. 

The actual planning for more efficient irrigation requires better information on: 

1. deep drainage under different management practices and irrigation types in relation to 
the soil type,  

2. soil mapping, and 

3. interpretation of shallow geomorphology to show the interrelationships between soils 
and underlying sediments.   

Radiometrics may be able to provide better information on soils at reasonable cost.  The 
cost per length of flightpath is about an order of magnitude cheaper than electromagnetic 
induction techniques.  The strength of the signal will be related to the chemistry, and 
hence clay content, of the surface soils.   

10. Conclusions 
1) A map of sub-surface clays has been produced for the eastern site, which reliably 

shows areas of varying clay thickness.  The spatial pattern of clays matches the 
expectation from an understanding of the landscape history. 

2) This information has been used to provide estimates of salt fluxes to the underlying 
aquifer under both dryland and irrigated agriculture over the next 200 years.  Under 
dryland agriculture, the leaching of salt takes 50 to 200 years with quicker times in the 
more shallow water table areas to the west.  The leaching under the assumed irrigated 
agriculture takes 20 to 50 years again with the same pattern.  Superimposed on the 
east-west water table trend is a linear pattern running NNW associated with the clays. 

3) This data has been used as input to groundwater models.  The salinity of groundwater 
is expected to increase under current irrigation by 1000-6000 mg/L over the next 25-
40 years.  This is sufficient to make some groundwater unsuitable for irrigation and in 
some cases, for stock and domestic water supply.   

4) The spatial patterns of groundwater salinity of the western site were reliably mapped.  
The mapping even indicated areas of increasing groundwater salinity caused by 
irrigation recycling.  

5) The geophysics also showed areas of high basement to the west of the study area.  
This information will support drilling for scant water resources in this area.   

6) There are a number of indications of increasing stress on vegetation in the western 
study area.  The area of native vegetation currently at risk in this area is 605 ha. 
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11. Recommendations for Management 
 

Tintinara East / Mallee Highland 

There are no obvious current economic measures to prevent salinisation processes under 
dryland conditions.  This suggests that there may be a finite lifetime for the groundwater 
resource.  Horticultural development will exacerbate this salinisation process.  Thus, there 
are trade-offs between profitable irrigation and the lifetime of the groundwater resource.   

Data suggests that efficient irrigation on appropriate soils may lead to deep drainage rates 
comparable to that of dryland conditions.  Thus, adaptation to more efficient irrigation can 
lead to a better overall outcome.  Modelling results can provide the basis of a more 
sensible public discussion of these issues. 

To better inform management strategies, Osei-Bonsu et al. (2004) recommend that 
modelling of salinity responses to varying irrigation drainage rates be undertaken, to 
simulate the variation in irrigation efficiencies under different crop types.  Also, regular 
salinity monitoring of all irrigation bores and some dryland stock bores should be 
continued to assist with the groundwater model calibration and validation.  

 

Tintinara West / Coastal Plains 

Monitoring of vegetation sites affected by, and at risk from, salinity should be undertaken 
(or continued) using mapped shallow groundwater salinity and vegetation (Figure 12, 
taken from Camp, 2004) as a guide to appropriate future monitoring sites.   

Potential salinity impacts from irrigation activities should also be monitored, particularly in 
salinity ‘hotspots’ as indicated by the AEM survey. Where elevated conductivities in the 
shallow AEM data coincide with irrigation activities, this suggests the presence of higher 
groundwater or soil salinity zones (‘hotspots’), which can be confirmed by on-ground 
investigation. 

Drilling for groundwater resources in the western study area should be undertaken in 
locations which avoid the newly mapped shallow granite basement. 

 

 



 

SA SMMSP Tintinara Summary 42 Report DWLBC 2004/ 36 

ACKNOWLEDGEMENTS 
 

This report was produced for the Department of Water, Land and Biodiversity 
Conservation as part of the South Australian Salinity Mapping and Management Support 
Project funded by the National Action Plan for Salinity and Water Quality. The National 
Action Plan for Salinity and Water quality is a joint initiative between the Australian, State 
and Territory Governments. 

This report is but one of component of a much larger project looking into the value of 
airborne geophysical techniques in gathering information to assist with salinity 
management.  

Successful results came from the combined skill base of the assembled multidisciplinary 
team. Team members came from the following organizations:  CSIRO Land and Water, 
CSIRO Exploration and Mining, Bureau of Rural Sciences, the Cooperative Research 
Centre for Landscape Environments and Mineral Exploration (CRC LEME), Geoscience 
Australia, (SA) Department of Water, Land and Biodiversity Conservation (DWLBC), Rural 
Solutions SA, and consultants. 

Valuable local input and insight has resulted in a more meaningful study and special 
thanks should go to the landholders in the area who gave access to properties, and to the 
Tintinara-Coonalpyn Water Allocation Planning Committee.  

 

 

 
 



 

SA SMMSP Tintinara Summary 43 Report DWLBC 2004/ 36 

REFERENCES 
 

Brodie, R.C., Green A.A., and Munday, T.J. 2003. Calibration of RESOLVE airborne 
electromagnetic data, Riverland and East Tintinara, South Australia.. CRC 
CRC LEME Open File Report 173, Cooperative Research Centre for 
Landscape Environments and Mineral Exploration, December 2003 

Camp, A. 2003 Salinity and Native Vegetation Health – Tintinara and Angas-Bremer 
Plains, South Australia. Department of Water, Land and Biodiversity 
Conservation 

Christensen, A. 2002. Calibration of electromagnetic data. Pp. 20-38 in Dent, D.L. (ed) 
MDBC Airborne Geophysics Project, Final Report. BRS Technical Report, 
Canberra. 

Cook, P.G. and Kilty, S. 1992. A helicopter-borne electromagnetic survey to delineate 
groundwater recharge rates.  Water Resour. Res. 28: 2721-2731. 

Cook, P.G., Leaney, F.W. and Miles, M.  2004. Groundwater recharge in the north-east 
Mallee region South Australia, CSIRO Land and Water Technical Report No. 
25/04. 

Cook, P.G., Telfer, A.L. and Walker, G.R. 1993. Potential for salinisation of the 
groundwater beneath mallee areas of the Murray Basin. CGS Report #42 
Flinders University.  EWS (South Australia) Report #93/6. 

Cowey, D., Garrie, D., and Tovey, A.  2003. Riverland and Tintinara, South Australia - 
RESOLVE Geophysical Survey, Acquisition and Processing Report. Report to 
the Bureau of Rural Sciences (available from Geoscience Australia), Fugro 
Airborne Surveys. 

Cresswell, R.G., Dent, D.L., Jones, G.L. and Galloway, D.S., 2004. Three-dimensional 
mapping of salt stores in the southeast Murray-Darling Basin, Australia. 1. 
Steps in calibration of airborne electromagnetic surveys. Soil Use and 
management, 20, 133-143. 

George, R. and Green, A. 2000. Position paper on airborne geophysics for salinity and 
land management. Sustainable Land and Water Resources Management 
Committee (SLWRMC)     
ftp://ftp.ndsp.gov.au/pub/general/10_NDSP_projects/15_project_reports/RG_
R_VH_SLWRMC.pdf 

Gibson, D.L. 2004. An enhanced framework for natural resource studies in the Angas-
Bremer Plains area, South Australia. Technical Report to SA-SMMSP/ CRC 
LEME Open File Report 172. Cooperative Research Centre for Landscape 
Environments and Mineral Exploration. 

Hunter, D. 2001. Interpretation of conductivity depth transform (CDT) visualisation 
products. CSIRO Exploration and Mining Restricted Report 838R 

Leaney, F.W. 2000. Groundwater salinisation in the Tintinara area of South Australia. 
Results of field investigations. CSIRO Land and Water Technical Report 
34/00. 44pp. 



 

SA SMMSP Tintinara Summary 44 Report DWLBC 2004/ 36 

Leaney, F.W. 2001. Estimation of recharge under irrigated lucerne and olives near 
Kynoch, South Australia.  (Unpublished report for DWLBC). 

Leaney, F., Barnett, S., Davies, P, Maschmedt, M., Munday, T. and Tan, K. 2004.  
Groundwater Salinisation in the Tintinara Highland Area of SA:: Revised 
estimates using spatial variation for clay content in the unsaturated zone.  
CSIRO Land and Water Technical Report No. 24/04.  January 2004. 

Leaney, F.W.J. and Herczeg, A.L. 1999. The origin of fresh groundwater in the SW 
Murray Basin and its potential for salinisation. CSIRO Land and Water 
Technical Report 7/99. 

Leaney, F., Walker, G., Knight, J., Dawes, W., Bradford, A., Barnett, S. and Stadter, F. 
1999. Potential for groundwater salinisation in the Tintinara area of South 
Australia. Impacts of planned irrigation allocations. CSIRO Land and Water 
Technical Report 33/99. 57 pp. 

NLWRA (2001) Australian Dryland Salinity Assessment 2000, Extent, impacts, monitoring 
and management options.  National Land and Water Resources Audit. 
Commonwealth of Australia, 130pp. 

Osei-Bonsu, K., Barnett, S., Leaney, F. and Davies, P. 2004. Modelling Groundwater 
Salinisation in the Tintinara Highlands area of SA, Department of Water, Land 
and Biodiversity Conservation, DWLBC Report 2004/ 44, December 2004. 

Tan, K.P, Munday T.J. and Leaney, F. 2004. The validation of RESOLVE helicopter EM 
data: Mineralogical and petrophysical results from field investigations for the 
Tintinara East survey area, in the south east of South Australia. CRC LEME 
Open File Report 174. Cooperative Research Centre for Landscape 
Environments and Mineral Exploration, September 2004. 

Wilford, J.R. 2004  3D regolith architecture of the Jamestown area – implications for 
salinity. Report to SA-SMMSP / CRC LEME Open File Report 178. 
Cooperative Research Centre for Landscape Environments and Mineral 
Exploration. 

Wilford, J., Dent, D.L., Braaten, R. and Dowling, T. 2001. Running down the salt in 
Australia 2: Smart interpretation of airborne radiometrics and digital elevation 
models. The Land, 5, pp79-101. 

 

 

Personal Communications 

Barnett, S.R., SA Department of Water, Land and Biodiversity Conservation, Adelaide. 

Osei-Bonsu, K., SA Department of Water, Land and Biodiversity Conservation, Adelaide. 

 

 




