GROUNDWATER EXPLORATION, QUORN TOWNSHIP WATER SUPPLY WELLFIELD

> DWLBC Report 2002/28

The Department of Water, Land and Biodiversity Conservation

GROUNDWATER EXPLORATION -QUORN TOWNSHIP WATER SUPPLY WELLFIELD

K. Osei-Bonsu and S. Evans

Groundwater Assessment Department of Water, Land and Biodiversity Conservation

July 2002

Resource Assessment Division

Department of Water, Land and Biodiversity Conservation Level 11, Grenfell Centre, 25 Grenfell Street, Adelaide SA 5000 GPO Box 2834, Adelaide SA 5001 Telephone <u>National</u> (08) 8463 6971 International +61 8 8463 6999 International +61 8 8463 6999

Website www.dwlbc.sa.gov.au

Disclaimer

Department of Water, Land and Biodiversity Conservation and its employees do not warrant or make any representation regarding the use, or results of the use, of the information contained herein as regards to its correctness, accuracy, reliability, currency or otherwise. The Department of Water, Land and Biodiversity Conservation and its employees expressly disclaims all liability or responsibility to any person using the information or advice.

© Department of Water, Land and Biodiversity Conservation 2002

This work is copyright. Apart from any use as permitted under the *Copyright Act* 1968 (Cwlth), no part may be reproduced by any process without prior written permission from the Department of Water, Land and Biodiversity Conservation. Requests and inquiries concerning reproduction and rights should be addressed to the Director, Resource Assessment Division, Department of Water, Land and Biodiversity Conservation, GPO Box 2834, Adelaide SA 5001.

K. Osei-Bonsu and S. Evans, 2002. Groundwater Exploration – Quorn Township Water Supply Wellfield. South Australia. *Department of Water, Land and Biodiversity Conservation. Report,* DWLBC 2002/28.

FOREWORD

South Australia's natural resources are fundamental to the economic and social wellbeing of the State. One of the State's most precious natural resources, water is a basic requirement of all living organisms and is one of the essential elements ensuring biological diversity of life at all levels. In pristine or undeveloped situations, the condition of water resources reflects the equilibrium between rainfall, vegetation and other physical parameters. Development of these resources changes the natural balance and may cause degradation. If degradation is small, and the resource retains its utility, the community may assess these changes as being acceptable. However, significant stress will impact on the ability of a resource to continue to meet the needs of users and the environment. Understanding the cause and effect relationship between the various stresses imposed on the natural resources is paramount to developing effective management strategies. Reports of investigations into the availability and quality of water supplies throughout the State aim to build upon the existing knowledge base enabling the community to make informed decisions concerning the future management of the natural resources thus ensuring conservation of biological diversity.

Bryan Harris Acting Director, Knowledge and Information Division Department of Water, Land and Biodiversity Conservation

CONTENTS

FOREWORD	I
CONTENTS	
ABSTRACT	1
INTRODUCTION	2
APPROACH TO INVESTIGATION	3
PREVIOUS WORK	4
PHYSIOGRAPHY, CLIMATE AND GEOLOGY	6
Physiography	6
Climate	6
Geology	6
GROUNDWATER RESOURCES OF QUORN WELL-FIELD	10
METHODOLOGY	17
Field work	17
Site selection	17
Drilling and sample collection	17
BOREHOLE 1 – WELL UNIT NO. 6344-864 (PN 58571)	
BOREHOLE 2 – WELL UNIT NO. 6344-865 (PN 58572)	
CONCLUSION AND RECOMMENDATIONS	19
SI UNITS COMMONLY USED WITHIN TEXT	20
ABBREVIATIONS COMMONLY USED WITHIN TEXT	20
REFERENCES	21

П

List of Figures

Figure 1.	Site locality and physiology	7
Figure 2.	Depot Flat monthly rainfall	8
Figure 3.	Quorn Post Office monthly rainfall	8
Figure 4.	Site geology	9
Figure 5.	Distribution of well yield	12
Figure 6.	Distribution of well salinity	13
Figure 7.	Proposed investigation sites	14
Figure 8.	Annual volume of groundwater extracted from Quorn 1	15
Figure 9.	Volume of ground water weekly extracted from Quorn 1	15
Figure 10.	Weekly extraction volume and observed water level from Quorn 1	16
Figure 11.	Depth to water level in observation well Quorn 4	16
Figure 12.	Airlift yield versus depth graph - Well 6533 865 (PN 58572)	18

List of Appendices

APPENDIX A	
APPENDIX B	
APPENDIX C	
APPENDIX D	
APPENDIX E	
APPENDIX F	

ABSTRACT

Desktop studies and drilling of two exploratory wells were undertaken during hydrogeological investigations in Quorn Town Water Supply Wellfield. The two wells, 6533-864 (PN 58571) and 6533-865 (PN 58572), were drilled through soft sandstone formation to depths of 80 m and 120 m, respectively. While no significant water bearing zones were intercepted in well 6533-864, water-bearing fractures were intercepted between the depth of 82 and 108 m below ground surface with standing water level of 58.8 m in well 6533-865. Well 6533-865 was airlifted at 6 m intervals as drilling progressed with increasing airlift yield from 120 m of 1 L/sec. Three water samples were collected during airlifting from 120 m for salinity analysis. An average salinity of 903 mg/L was determined. Well 6533-864 was abandoned and backfilled. Information gained from well 6533-865 indicates the likelihood of existence of water bearing zones below the current depth of Quorn 1 water supply well. There is a potential that drilling of a well adjacent to Quorn 1 to a depth of 150 m may provide a yield adequate to meet the water supply requirement of Quorn.

INTRODUCTION

The Quorn Township depends primarily on groundwater pumped from three wells that are completed in a fractured aquifer system. Groundwater development in the area started in 1957 when water from the town reservoir became polluted. Quorn 1 was drilled in 1957 as the town water supply source to replace the reservoir. As demand for potable water increased three additional wells were drilled between 1968 and 1987 to meet the demand with the total withdrawal from the major water supply well Quorn 1 increasing from 21 594 kL in 1987 to 169 235 kL in 2001. Currently the operator of the wellfield, South Australia Water Corporation (SA Water), is most concerned about the wellfield yield during peak demand over the summer periods when the wellfield is under most stress. In 2002 SA Water contracted the Department of Water, Land and Biodiversity Conservation (DWLBC), to explore for more groundwater within the current well field. The objectives of the study were to explore the possibility of obtaining a potable water supply from an interpreted fault zone and from fracture zones, which occur deeper than the current production wells.

The information used and presented in this report was obtained from unpublished Mines and Energy of South Australia (MESA) reports, data provided by SA Water Quorn Office and data collected by DWLBC during fieldwork. Data obtained from these sources includes drilling depth, lithologic log, well yields, weekly extraction volume from production wells, water levels, salinity, and rainfall from two metrological stations. A listing of wells used in this study is presented in Appendix1. Summary information provided in the listing include well unit number; easting and northing; well depth; latest static water level; well status and use; latest salinity; and latest yield. Depth measurements used in this report refer to metres below ground surface. Data from all the wells used in this report is stored in the corporate database SA_GEODATA. The well data was used to assist in determining the aquifer type, the depth to the aquifers, salinity, yield distribution and selection of the drilling sites. Additional data for some wells, which includes transmissivity and long-term yield is presented in publications by Bleys (1969), Sibenaler (1979) and Read (1987).

APPROACH TO INVESTIGATION

The purpose of this report is to present the work conducted in investigating the possibility of obtaining groundwater of good quality in sufficient quantity from within the Quorn wellfield. Desktop study of existing well information and fieldwork was undertaken to help in the selection of sites for drilling of exploratory wells. The desktop study included

- Review of previous work done by Read (1987); Sibenaler (1979); Bleys (1969); Hillwood (1965); Gibson (1968); and Shepherd and Thatcher (1956).
- Studying the geological, structural, hydrological and hydrogeological framework of the site interpretation of the site physical geology, structural geology and hydrogeology was based on the borehole logs within the area and work of Shepherd and Thatcher (1956) and Hillwood, (1965).
- Analysis of the hydraulics of the existing production wells and aquifer response to long term pumping interpretation of the hydraulics of the wells and the aquifer is based on studying the behaviour of drawdowns observed during pumping tests, response of water levels to rainfall.

PREVIOUS WORK

The desktop study involved a review of previous studies and analysis of drillers' logs and reports to determine the aquifer system, groundwater flow regime, well yields and salinity distribution in the area. Studies that have been conducted at the study area as part of exploiting groundwater for Quorn town water supply are found in Hillwood (1965), Gibson (1968), Bleys (1969), Sibenaler (1979), and Read (1987).

Hillwood (1965) studied the possibility of obtaining additional supply of groundwater for Quorn township and concluded that the Sturtian feldspathic sandstone is the best aquifer in the area and suggested that a site near the main road and in close proximity to the Stony Creek crossing be selected for drilling. Hillwood recommended drilling to a depth of 90 m in the feldspathic sandstone in order to obtain a supply of 5 - 6 L/sec. The well (6533-176) drilled at the site recommended by Hillwood to a depth of 69 m yielded a maximum supply of 0.5 L/sec of poor quality water, Gibson (1968).

Gibson (1968) examined the area between the Stony Creek and the reservoir and found that the rocks were sound and not weathered and considered none suitable as good aquifers. Gibson therefore concluded that the large fault separating the Sturtian feldspathic sandstone from the Cambrian quartzite offers the best prospect of obtaining a large supply of fair quality water. A site on the western bank of the Ingaree Creek and close to the current pipeline was selected for drilling. Gibson recommended a 0.2 m diameter well drilled to a depth of 90 m.

Bleys (1969) drilled and constructed a well (6533-177; Quorn 2) to a depth of 56 m at the site recommended by Gibson (1968) and encountered very hard quartzite at the depth of 12 m in this well. Bleys conducted a 3-stage aquifer test of 100 minutes with recovery test. A 3-day continuous aquifer test and a 24-hour recovery test followed the step stage testing. The well was aquifer tested at a maximum rate of 5.89 L/s with a pump setting at 55 m below surface. Transmissivity was estimated at 240 m²/day. Bleys concluded that the maximum drawdown expected after 3 years of continuous pumping at a rate of 5.89 L/s would be 6.2 m. Bleys recommended a pumping rate of 3.75 L/s. It was calculated that at a rate of 3.75 L/s the expected drawdown in the well after 3 years of continuous pumping would not be more than 4.4 m.

Sibenaler (1979) drilled a production well (6533-179; Quorn 3) and a scout hole (6533-212) in 1978. The production well was sited near a major fault zone and Stony Creek and was completed in quartzite. The scout hole was sited near a major fault in quartzite and a major tributary of Capowie Creek. Sibenaler conducted a 48 hour well discharge test which consisted of a 5-stage step drawdown test followed by a constant discharge test of 41 hours. A transmissivity value of 70 m²/day was calculated for the production well. The long-term yield from the production well was estimated at 6.9 L/s. The scout hole was airlifted at a rate of 3.82 L/sec for 1 hour.

Read (1987) drilled one production well (6533-626 Quorn 4) and four scout wells (6533-627, 6533-628, 6533-629 and 6533-630) around Quorn township. The production well has a low long-term yield and none of the scout wells showed any potential for town water supply. Read estimated a long-term yield for Quorn 4 to be 2.9 L/s for 10 days of continuous pumping and recommended that Quorn 4 be replaced by a deeper well. Read reported that Quorn 4 intercepted a dry fault zone at 30 m.

Read (1987) found that good yields appear to be restricted to within a few hundred metres of the major north-south fault and concluded that the area west and north of the existing well field appears to have low salinity and well fractured. Read recommended future

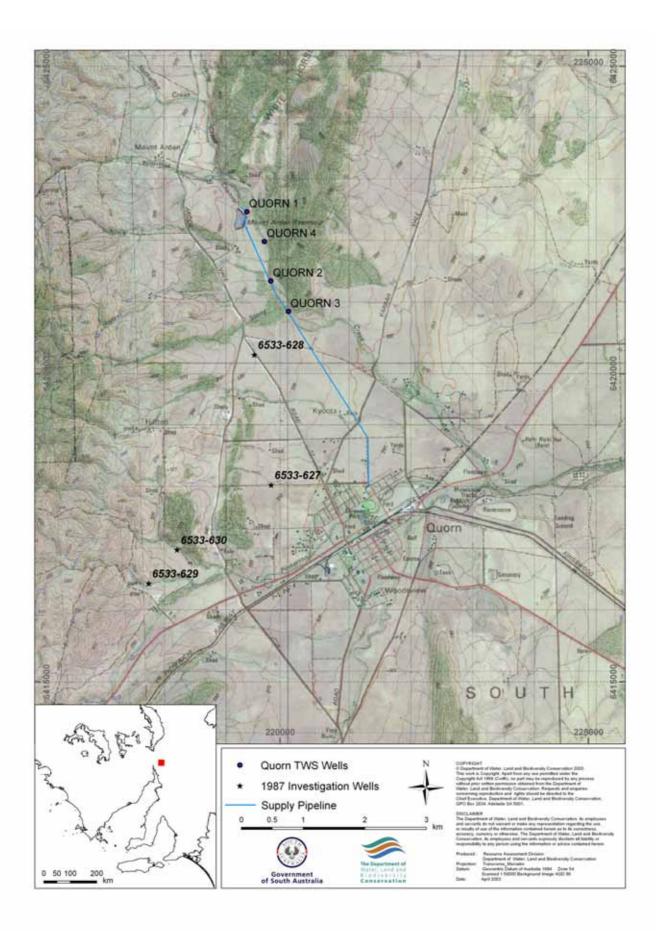
exploration should be directed to the west of existing well-field where salinity of groundwater is less than 1500 mg/L. Read further recommended that any new production well be drilled about 20 m west of Quorn 4 to a depth of 150 m with the expectation that a yield of 5 L/s with salinity of 1600 mg/L would be obtained. Read was of opinion that since in other parts of the Flinders Ranges sandstones similar to those found at the Quorn Water Supply Wellfield have fracture permeability to depths of about 150 m any well to be drilled in Quorn wellfield in future should be 150 m deep.

Existing well information indicates that the locally prominent fracture zone that dips to the west is the likely source of groundwater to the Quorn 1 production well. The target of the drilling project was to explore the extent and water bearing nature of this fracture zone and the water bearing potential of the strata below this fault to the south of Quorn 1.

Physiography

Quorn Township, which is about 334 km north of Adelaide (Fig. 1), is located in the midnorth of South Australia at the southern end of the main Flinders Ranges. The study area, Quorn Wellfield, is located about 8 km north of Quorn town and is reached by the Arden Vale Road.

The study area could be divided into two physiographic units – undulating valley and ridges (Fig. 1). The valley is covered with recent alluvium of clays, sandy mottled clays, clayey sands, silt, gravels and pebbles of sandstone quartzite and siltstone. The ridges surrounding the study site comprise the exposed fracture rock strata of the Adelaidean. These ridges range in altitude from about 380 m (Mount Arden) to about 500 m (Mount Benjamin). Depth to the top of the bedrock within the study area is less than 12 m below ground surface.


The study area is drained by multi-branched Ingaree, Nathaltee and Stony creek systems (Fig. 1). The general movement of surface water is southwards from the surrounding ridges and eventually enters the Willochra Creek system. The Mount Arden Reservoir, situated in the well field, was built to supply water to Quorn Township. Surface water has been diverted from the upper catchment of the creek system through concrete channels into the reservoir. Water discharges from the reservoir through evaporation as no water is currently being utilised for reticulation. There is no evidence that significant recharge from the reservoir infiltrates to the aquifer system at the site.

Climate

The climate of the study area is semi-arid with low average summer monthly rainfall and high average summer temperature. Summer temperature ranges from about 28°C to 40°C and winter temperatures from 6°C to 22°C. Fig. 2 and Fig. 3 indicate rainfall data obtained from two nearby stations – Arden Vale and Quorn Post Office respectively. The wet period occurs between May and October and the dry period extends from November though to April. Annual rainfall in the study area ranges from less than 5 mm to about 115 mm.

Geology

The study area is bordered on the north, east and west by ridges of Precambrian sandstone, Cambrian quartzite, shales, siltstone and slates, which also underlie the valley (Fig. 4). The most important feature of the wellfield is a large westerly dipping fault zone which strikes north-south and a gently north plunging syncline which lies immediately east of the fault. The quartzite is well exposed in the northern bank of Stony Creek. The beds of the quartzite dip to the west and exhibits little jointing. The quartzite is underlain to the east by shales. On the west the quartzite is terminated against the north-south striking fault. Adjacent to the fault is the felspathic sandstone, which is interbedded with thin quartzite. Slates overlie the felspathic sandstone. The felspathic sandstone with the thin interbedded quartzite and the slates are all dipping westerly.

Figure 1. Site locality and physiology

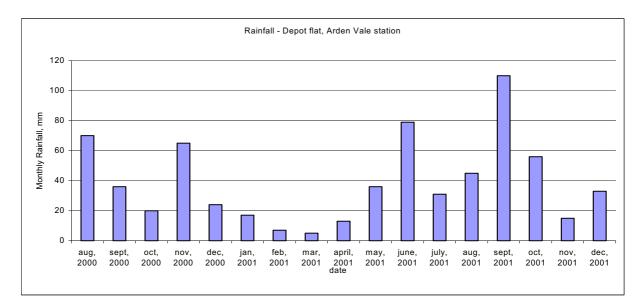


Figure 2. Depot Flat monthly rainfall

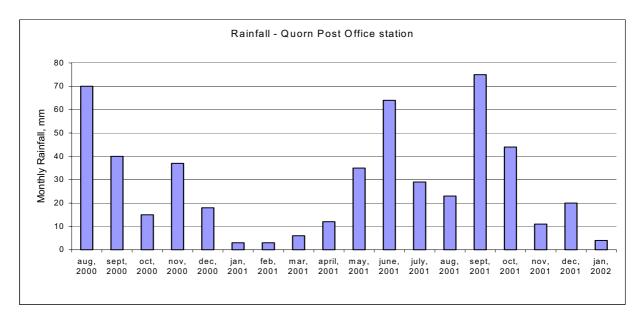


Figure 3. Quorn Post Office monthly rainfall

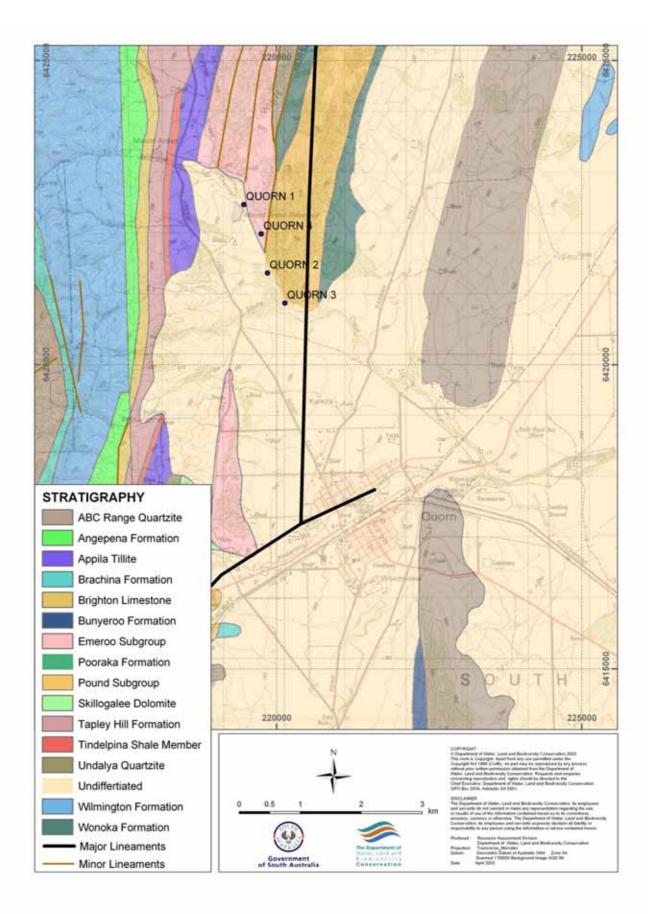


Figure 4. Site geology

GROUNDWATER RESOURCES OF QUORN WELL-FIELD

The geologic formation underlying the wellfield consists of slates, guartzite and felspathic sandstone. The basement rock is covered with recent alluvium ranging in thickness between 3 and 12 m. The shallow depth to the basement and the nature of the alluvium suggest a limited volume of groundwater in storage and low hydraulic properties of the alluvium. The rocks of the surrounding ridges and basement rocks underlying the study area are poorly permeable. The basement rocks have little, if any, primary permeability and groundwater resides and flows through openings developed through fractured sandstones and quartzite. Where the fractured basement rocks are saturated the openings form important aguifers for low to medium yielding wells suitable for supply of water for the Quorn Township. The range in yields from existing wells reflects the variation in aquifer characteristics. Reported yields of the existing wells in the study area ranges from less than 0.5 L/s to about 9 L/s (Appendix 1). Of the wells studied 71% have yield less than 1.5 L/s (Appendix 2). The well yield distribution map (Fig. 5) indicates that yields are commonly between 1 and 5 L/sec in areas to the south of the well field. A number of pumping tests, ranging between 48 and 72 hours were carried out on some of the wells located in the study area. Analysis of the behaviour of drawdowns observed during aquifer tests of the wells indicate two types of flow in the aquifers: radial flow (Sibenaler, 1979) and double boundary or linear-flow (Read, 1987). The hydraulic properties of the aquifers are low and vary from one spot to another. Transmissivity values of 70 m²/day and 240 m²/day were reported for two of the wells (Bleys, 1969 and Sibenaler, 1979).

Depth of wells in study area ranges from 1.5 to 207 m below ground surface. Of these wells 19% have total depth less than 25.0 m, 27% have depth between 25 and 50 m and 54% have depth greater than 50 m. Water levels in wells located in the study area ranges from 0.8 to 69 m below ground surface. The shallowest water level occurs in wells to the east of the wellfield. The deepest water level occurs in well (6533-628) at a depth of 69 m below ground surface. Lateral groundwater movement beneath the study area primarily occurs within fractures and other opening in the basement rocks. The degree of connection between the openings is not known at present but may vary from site to site. A map of water table was prepared by Read (1987). The altitude and configuration of the groundwater level contours indicate that the general direction of groundwater flow is from the west to the east. Being a fractured rock environment the contours may not necessarily indicate actual groundwater flow direction.

In the study area little water quality information is available. Drilling reports generally describe the water quality in terms of total dissolved-solid concentration (salinity). The salinity of groundwater in the study area varies from place to place and it ranges from 300 mg/L to over 18 000 mg/L. Salinities of most production wells exceed 1500 mg/L (Appendix 1). Out of 128 salinity data analysed only 27 (21%) is less than or equal to 1500 mg/L. Generally salinities of groundwater in the area increase to the east, south and southeast of the well field (Fig. 6). The salinity of groundwater to the west of the existing well field is generally less than 1500 mg/L.

The groundwater in the basement rocks originates from rainfall. Recharge is assumed to occur through fault openings in the ridges and drainage lines that expose fault zones, although no direct measurement is available. There is no evidence that water from the reservoir recharge to the aquifer system at the site.

The Quorn Township wellfield consists of three production wells along the pipeline from Mount Arden Reservoir to the town (Fig. 7). These wells are denoted as Quorn 1, Quorn 2 and Quorn 3. Quorn 1 was constructed in 1948 and is 80 m deep below ground surface. It

was completed with a slotted screen from 61 - 65 m below ground surface. Quorn 2 and Quorn 3 were completed as open-holes in 1969 and 1978 respectively. Quorn 2 is 56 m and Quorn 3 is 69 m deep below ground surface. A fouth well [Quorn 4], which extends to 76 m below ground surface with a slotted screen completion from 58 - 76 m, is not equipped as a production well.

Extraction of groundwater from the wellfield first began in 1950 when Quorn 1 was put into operation. Between 1969 and 1985 Quorn 2 and Quorn 3 production wells were commissioned to meet the increasing demand of water in Quorn Township. Currently the Quorn Township is served by groundwater pumped from all three wells. Both Quorn 2 and Quorn 3 are use to supplement demand when the capacity of Quorn 1 is insufficient. The fourth well is being used as an observation well. The highest percentage of water is extracted from Quorn 1. This relatively high volume of extraction indicates that the formation penetrated by this well has a higher storativity and transmissivity than the formation penetrated by the other production wells. It is not known how much water was extracted from Quorn 1 prior to 1987. Available data indicate that about 21 600 kL was extracted from Quorn 1 in 1987, 122 000 kL in 1991, 130 000 kL in 1995, 150 000 kL in 2000 and 169 000 kL in 2001. Fig .8 indicates the annual extraction volume from Quorn 1. Weekly extraction volume from Quorn 1 is summarised in Appendix 3 and shown in Fig. 9. Groundwater extraction from Quorn 1 exceeds 3000 kL per week during periods of peak demand (Fig. 9). Weekly measurements of water levels have been made at two observation wells and the production well Quorn 1 during 19 months period from August 2000 through February 2002. Water level hydrograph for Quorn 1 is shown in Fig. 10. SA Water monitor the water levels. It is not known when extraction of water from Quorn 2 and Quorn 3 began. Apart from a rise in water level between 09/08/2000 and 07/09/2000 and between 01/08/2001 and 05/09/2001 there is a general drop in water level in Quorn 1. Between September 2000 and February 2002 the groundwater level in Quorn 1 fell by about 0.30 m. If all the three wells, Quorn 1, Quorn 2 and Quorn 3, were in operation at the same time then, it shows either there is no interference between the wells or the wells are extracting water from separate fracture zones or compartments.

The comparision of volume extracted and measured water level in Quorn 1 (Fig. 11) indicates a reduction in volume of water extracted from Quorn 1 between May and October, a period during which rainfall was relatively (Figs. 2 and 3). The water level in Quorn 1 was expected to rise in response to the combined effect of the low volume extracted and high rainfall. However, there was no net positive response from Quorn 1 apart from a small rise in water level from 69.49 m to 69.64 m between 01/08/2001 and 05/09/2001. This small water level rise of 0.15 m indicates either recharge to the aquifer was small, or slow movement of winter rainfall from recharge areas towards Quorn 1. The highest water level rise in Quorn 1 occurred in 07/11/2001, when weekly extraction was reduced from 4384 kL to 2875 kL. This could mean a delayed recharge to the aquifer. That is, most of May – October rainfall recharge reached Quorn 1 in November.

Observed water level from observation well Quorn 4 (Fig. 11), as observed in Quorn 1, indicates a rise in water level during August and September 2001.

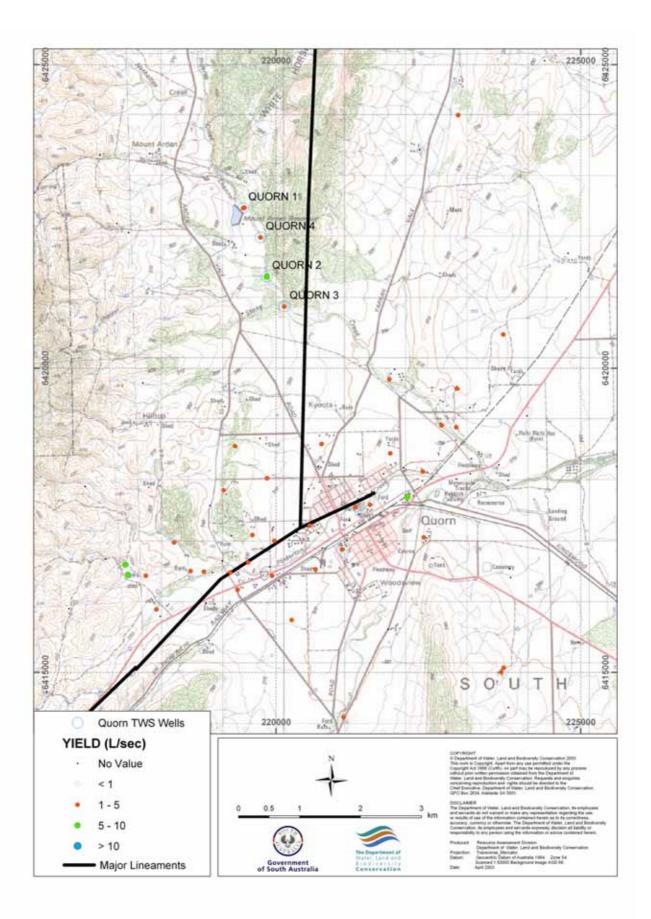
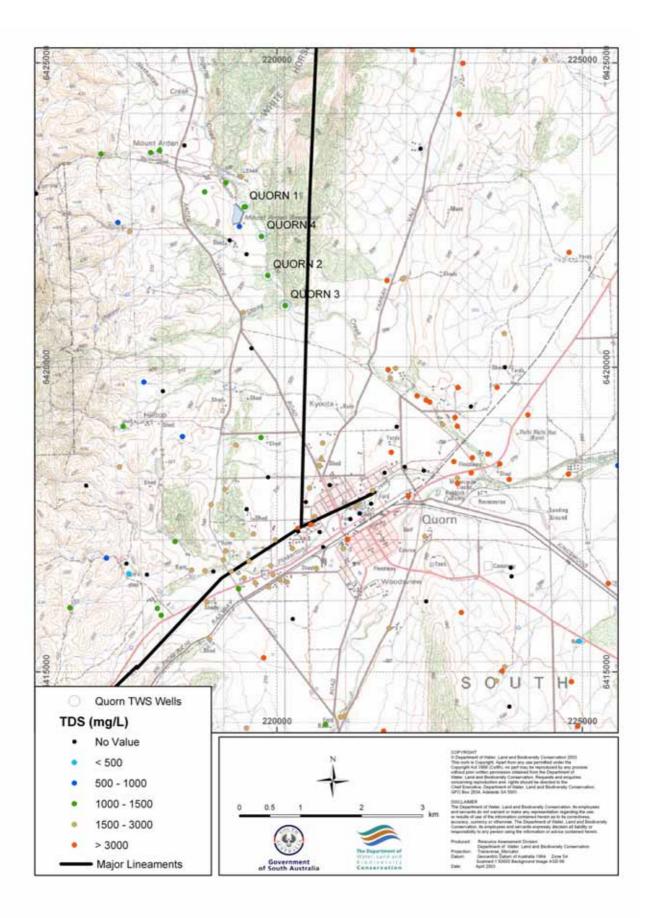
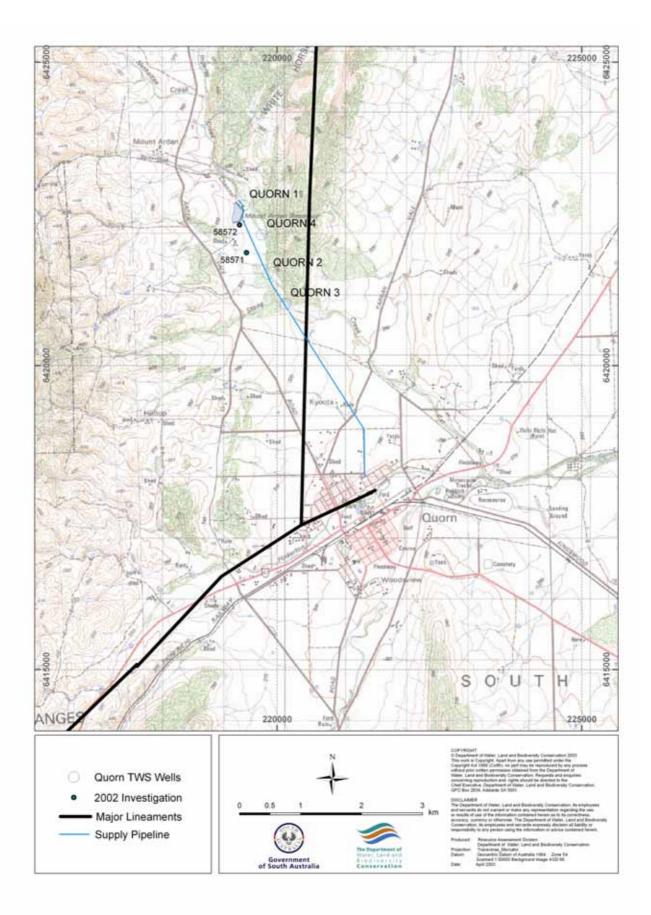




Figure 5. Distribution of well yield

Figure 6. Distribution of well salinity

Figure 7. Proposed investigation sites



Figure 8. Annual volume of groundwater extracted from Quorn 1

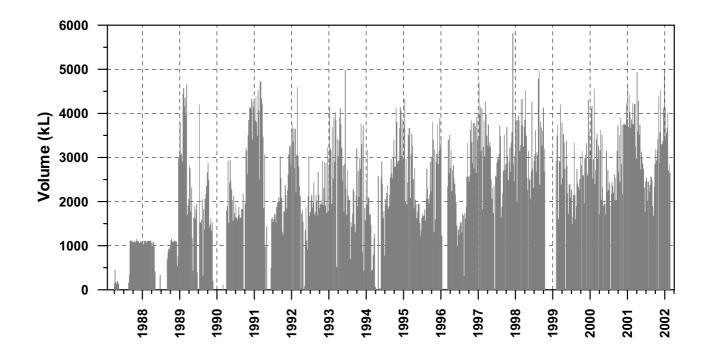


Figure 9. Volume of ground water weekly extracted from Quorn 1

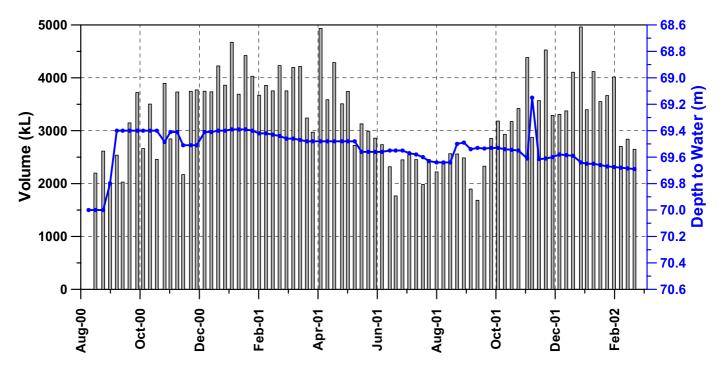


Figure 10. Weekly extraction volume and observed water level from Quorn 1

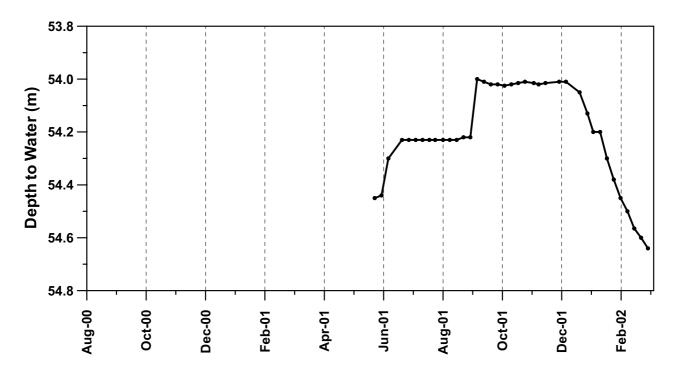


Figure 11. Depth to water level in observation well Quorn 4

METHODOLOGY

Field work

The fieldwork included site selection, drilling of two exploratory wells, collection and description of drill-cutting samples, airlifting of water from water bearing intervals to determine aquifer yield and collection of water samples for determination of total dissolved-solids concentration.

Site selection

The aim was to drill wells to investigate the fault/fractured zones estimated to be at 65 – 75 m depth at the proposed drill sites and investigate the water bearing potential below the present production zone of Quorn 1. Selection of sites for drilling exploratory wells was determined on the basis of the following factors:

- structural geology of the site,
- location of existing production wells,
- responses of wells Quorn 1, Quorn 2, Quorn 3 and observation well [Quorn 4] to pumping,
- distribution of groundwater salinity,
- yield of wells drilled in the study area, and
- the location of pipe and power lines and underground cables.

The sites were selected to minimise any potential well interference and to be in close proximity to pipe and power lines. The client, SA Water, requested the location of any new production well to be within 500 m from the existing pipe and power lines.

It has been deduced that the north-south fault passing through the study area is dipping to the west, Read (1978). Study of existing geologic and hydrogeologic data indicates that Quorn 1 intercepted fractures at 61 m and Quorn 4 intercepted fault/fracture zones at 30 m and 57 m. Good yields appear to be restricted to within a few hundred metres of the major north-south fault (Fig. 5). And also the salinity of groundwater in areas to the west of existing well field is less than 1500 mg/L (Fig. 6). Based on these observations and the constraints, two sites were selected for drilling exploratory wells. Figure 7 shows the well field, the pipeline and selected sites for exploration. Site 1 is situated adjacent to the reservoir and about 900 m south of Quorn 1, about 55 m from the pipeline and about 25 m from an underground cable. The well at this site was drilled to a depth of 120 m below ground surface. Site 2 is located 1750 m to the south of Quorn 1 and about 190 m from the pipeline. The well at Site 2 was drilled to a depth of 80 m below ground surface.

Drilling and sample collection

The exploratory wells were drilled using down hole hammer with air circulation method and the drill-cuttings were collected every 3 m. The water-bearing zone was airlifted at 6 m intervals to initially estimate aquifer yield. Appendix 4 provides a summary of drilling details. The lithological logs for the wells are presented in Appendixes 5 and 6. The drillcutting samples indicate both wells were drilled through predominantly quartz sandstone.

BOREHOLE 1 – WELL UNIT NO. 6533-864 (PN 58571)

This well, located at Site 2 (E 219503, N 6421855, Z 54) was drilled on 23 May 2002 to a depth of 80 m. The drill-cutting samples indicate that sandstone was intersected throughout drilling, Appendix 5. The surface sediments consist of silt, pebbles, clay and clayey sand. Sandstone, which is poorly cemented (soft), begins at a depth of 11.5 m below ground surface and extends to 75 m. The interval between 75 and 80 m is hard and comprises quartzite and sandstone. At the interval between 54 and 63 m the drill-cuttings were damp. No fractures or faults nor water bearing zones were encountered in this well. The well was backfilled on 24 May 2002.

BOREHOLE 2 – WELL UNIT NO. 6533-865 (PN 58572)

This well, located at Site 1 (E 219388, N 6422314, Z 54) was drilled on 24 May 2002 to a depth of 120 m below ground surface. Appendix 6 shows the lithology of this well. Sandstone was intersected at 8.5 m below ground surface. At the interval between 18 and 72 m the sandstone was soft, (friable). The formation was relatively hard at the interval between 72 and 78 m. This interval was made up of sandstone and thin bands of quartzite. Between 78 and 82 m soft sandstone was intersected. The interval between 82 and 108 m is made up of fractured sandstone and quartzite with clay and silt. There was poor recovery of drill-cuttings at the intervals from 82 - 96 m and 105 - 108 m. Drillcuttings from 84 – 87 m and 90 – 93 m intervals were made up of clayey sandstone. The interval between 96 – 108 m is made up of interbedded layers of silty quartzite and silty soft sandstone. Between the 108 – 120 m interval is sandstone. There was water cut at 82 m where fracture was intercepted. An increase in flow rate was noted by the driller at the depth of 115 m below ground surface. There was increased in airlift yield as drilling progressed through the interval between 82 and 120 m (Fig. 12). The final airlift yield at 120 m was 1 L/sec and the salinity of groundwater was 903 mg/L. The depth to standing water level in this well was 58.85 m below ground surface.

The size of the quartz particles forming the sandstone in the flow zone ranges between 0.1 mm to 0.6 mm, (fine to medium), and is sub-rounded to rounded.

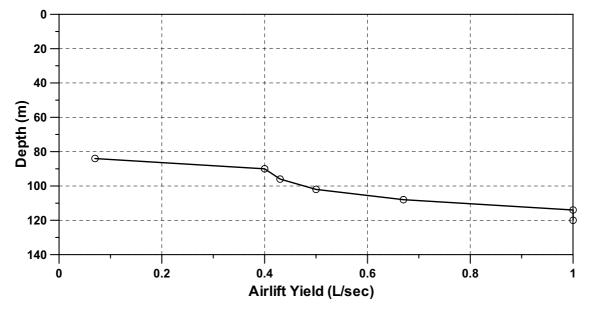


Figure 12. Airlift yield versus depth graph - Well 6533 865 (PN 58572)

CONCLUSION AND RECOMMENDATIONS

Two exploratory boreholes were drilled in Quorn Town Water Supply Wellfield between 23 and 24 May 2002 with the aim of investigating the depth to fractures in the geologic formation and groundwater resources potential at deeper depth. Soft quartz sandstone composed the rock at the drilled sites.

The first borehole (6533-864) was drilled on 23 May 2002 to a depth of 80 m below ground surface. No fault or fracture zones were intercepted in this borehole. This well was dry and it was backfilled on 24 May 2002. The fracture zone was not intersected in this well (as indicated by the second borehole). It is anticipated that the potential waterbearing fracture zone is deeper than 80 m at this location.

The second borehole (6533-864) was drilled on 24 May 2002 to a depth of 120 m below ground surface. Fractured zones were intercepted at interval between 82 and 108 m below ground surface. The fracture zone(s) are made up of clayey and silty sandstone and quartzite. It appeared that adjacent to the fracture zone the sandstone is interbedded with bands of quartzite. The fractured interval was the water-bearing zone in this borehole. Estimate of the overall yield of the aquifer intercepted in borehole 6533-865 was obtained by airlifting after completion of drilling. A yield of 1 L/sec was obtained when the well was airlifted from a depth of 120 m below ground surface. Aquifer yield of 1 L/sec is not of sufficient quantity for the town water supply. An average salinity of 903 mg/L was determined from 3 water samples collected during airlifting from 120 m. This borehole (6533-865) was not backfilled at this stage as there is the potential to investigate the hydraulic parameters of the fractured rock aquifer system, specifically if continuity exists between the fracture system in this borehole and Quorn 1. Furthermore, this borehole could be utilised as an observation well within the Quorn Town Water Supply Wellfield.

From the information gained from the second borehole (6533-865), it is likely that waterbearing zones may exist below the original depth of 80 m of production well Quorn 1. There is potential therefore that drilling of a well adjacent to Quorn 1 to a depth of perhaps 150 m may intercept a water bearing zone (separated from the current production zone of Quorn 1) that could yield at least the 5 to 7 L/s currently experienced from Quorn 1. Associated with the potential of intersecting water-bearing fracture systems, the deeper well would enable the placing of the pump intake at a greater depth to further insure continual water supply during future periods of prolonged low regional water levels.

Name of unit	Symbol	Definition in terms of other metric units	
Millimetre	Mm	10 ⁻³ m	length
Metre	Μ		length
Kilometre	Km	10 ³ m	length
Hectare	Ha	$10^4 m^2$	area
Microlitre	μL	10 ⁻⁹ m ³	volume
Millilitre	mL	10 ⁻⁶ m ³	volume
Litre	L	10 ⁻³ m ³	volume
Kilolitre	kL	1 m ³	volume
Megalitre	ML	10 ³ m ³	volume
Gigalitres	GL	10 ⁶ m ³	volume
Microgram	μg	10 ⁻⁶ g	mass
Milligram	mg	10 ⁻³ g	mass
Gram	g		mass
Kilogram	kg	10 ³ g	Mass

SI UNITS COMMONLY USED WITHIN TEXT

Abbreviations Commonly Used Within Text

Abbreviation		Name	Units of measure
TDS	=	Total Dissolved Solids (milligrams per litre)	mg/L
EC	=	Electrical Conductivity (micro Siemens per centimetre)	µS/cm
рН	=	Acidity	
δD	=	Hydrogen isotope composition	°/ ₀₀
CFC	=	Chlorofluorocarbon (parts per trillion volume)	pptv
δ ¹⁸ Ο	=	Oxygen isotope composition	°/ ₀₀
¹⁴ C	=	Carbon-14 isotope (percent modern Carbon)	pmC
ppm	=	Parts per million	
ppb	=	Parts per billion	

REFERENCES

Bleys, C., 1969. Quorn Town Water Supply Borehole No. 2. Department of Mines and Energy South Australia. Report Bk 69/74.

Gibson, A.A., 1968. Report on Groundwater Prospects – Quorn Water Supply. Hd. Pichi Richi – E. & W. S. Department. Department of Mines and Energy South Australia. Report Bk 66/127.

Hillwood E.R,. 1965. Underground Water Survey Quorn Water Supply – E. & W. S. Department. Department of Mines and Energy South Australia. Report Bk 61/148.

Read, R.E., 1987. Quorn Town Water Supply. Department of Mines and Energy South Australia. Report Bk 87/79.

Shepherd, R.G. and Thatcher, D., 1956. Quorn Sheet Geological Atlas 1:63 360 Series. Geological Survey South Australia.

Sibernaler, X. P., 1979. Quorn Town Water Supply Well 3 and Scout Hole 1. Department of Mines and Energy South Australia. Report Bk 79/11.

APPENDIX A

WELL DATA

Unit_no	Name	Easting	Northing	Status	Use	Tds, mg/L	Yield, L/sec	Swl, m	Depth, m
653300590		218079	6423564			1132	0.51	8.23	32
643300161		782176	6423525		Stock	1130	-	-	-
643300162		782176	6423524	Operational	Stock	716	-	1	3.45
653300241		217933	6423527	Operational	Domestic	1418	-	1.85	10
653300166		222352	6423592			-	-	-	76
653300172		219408	6423131	Operational	Domestic	1586	0.63	59.44	67.36
653300739	RH 2	242002	6423698	Plugged		-	-	-	44
643300487	DDR 4	776159	6423172	Unknown		-	-	-	61.06
653300602		219165	6423032			1127	0.75	68.5	78.6
643300163		781081	6422932	Operational		-	0.4	3.35	8.23
653300173		218817	6422882			1028	0.38	57.91	74.68
643300485	DDR 2	776069	6422952	Unknown		-	-	-	105.46
643300484	DDR 1	776069	6422952	Unknown		-	-	-	58.52
643300486	DDR 3	776199	6422872	Unknown		-	-	-	158.32
653300174	QUORN 1	219459	6422704			1183	3.54	50.29	80.47
643300166		782389	6422386	Operational		986	-	0.8	1.45
643300164		780091	6422420	Operational		1701	-	-	8.53
643300510		780692	6422326		Domestic	-	0.35	5.5	60
653300823		217588	6422229	Operational	Stock	1664	-	6.7	29.6
653300626		219747	6422149			1311	4.5	53.86	76.5
653300175		219226	6422085			-	-	-	-

Groundwater Exploration – Quorn Township Water Supply Wellfield

22

Unit_no	Name	Easting	Northing	Status	Use	Tds, mg/L	Yield, L/sec	Swl, m	Depth, n
653300167		224785	6421888			18205	-	8.04	19.6
653300177	QUORN 2	219710	6421551	Operational	Town Water Supply (Public/Muncipal)	1149	6.32	45.29	56.39
653300600		222058	6421450			2767	0.6	34	64
653300168		221802	6421425			4548	0.25	51.82	67
653300179	QUORN 3	219942	6421146	Rehabilitated	Domestic	1289	4	42	69
643300165	E&WS	775709	6421108			1056	-	-	-
653300176		219452	6420901	Abandoned		1770	-	60.05	69.49
653300671		223724	6420555	Operational	Domestic	2008	3	21.4	97.5
653300628		219584	6420310	Operational	Observation	-	0.25	69.06	81
653300178		221944	6419980	Backfilled		1914	-	-	105
653300753		221822	6419959		Irrigation	3035	0.5	-	32.3
653300170		223734	6420001			-	-	19.51	20.73
653300180		217822	6419758	Operational	Stock	899	-	3.8	11.2
653300169		221858	6419820	Operational	Stock	2295	1.89	-	39.62
653300675		218133	6419606	Operational	Domestic	-	0.15	8.4	32.4
653300614		222963	6419666			4354	1.25	36	74
653300601		223605	6419671			3943	0.4	42	79
653300724		222297	6419529		Irrigation	3460	0.5	16.2	94.5
653300762		222443	6419459	Abandoned	Irrigation	5010	0.3	35	79.2
653300763		222503	6419429		Irrigation	7289	0.5	26.2	64
653300171		223176	6419353			-	-	-	-
643300481	PX 5	777329	6419192	Unknown		-	-	-	62.18
643300479	PX 3	777329	6419192	Unknown		-	-	-	62.18
643300478	PX 2	777329	6419192	Unknown		-	-	-	62.18
643300482	PX 6	777329	6419192	Unknown		-	-	-	56.69

23

Unit_no	Name	Easting	Northing	Status	Use	Tds,	Yield, L/sec	Swl, m	Depth, n
						mg/L			
643300477	PX 1	777329	6419192	Unknown		-	-	-	82.3
643300483	PX 8	777329	6419192	Unknown		-	-	-	146.3
643300480	PX 4	777329	6419192	Unknown		-	-	-	91.44
653300674		224109	6419218	Operational	Domestic	4600	-	36.5	77
643300168		782286	6419037	Operational	Stock	1357	0.2	21	46
653300595		222917	6419175			3712	0.13	20	46
653300650		222714	6419060			1748	1.25	6	19
653300835		221959	6419021		Irrigation	-	0.6	18.2	61
653300663		222953	6419030			4043	2	24.3	91.4
653300662		222952	6419025	Backfilled		-	-	-	118
653300676		218454	6418861	Operational	Stock	861	0.75	20.6	113.6
653300181		219740	6418845			1390	-	-	85
653300822		219332	6418719		Domestic	1653	4	42.5	84
653300619		220751	6418757	Operational	Irrigation	1698	2.27	29.2	72.2
653300664		221874	6418602	Operational	Domestic	3612	2	18	61.9
653300299		228397	6418742			7654	8.84	12.19	19.81
653300227		223456	6418575			4700	0.76	13.11	68.58
653300182		220728	6418491	Operational	Stock	2251	0.45	22.56	31.39
643300169		782192	6418373	Operational	Stock	1552	0.05	1.85	7.9
653300226		223199	6418514			4291	-	10	77
653300820		222897	6418449		Irrigation	6395	0.5	8.2	48.7
653300668		220696	6418388	Backfilled		-	-	41	78
653300670		220696	6418388	Backfilled		2025	0.63	25	74
653300228		223651	6418412			3667	-	9.05	23.8
653300221		222093	6418363			-	-	4.6	4.57

24

Unit_no	Name	Easting	Northing	Status	Use	Tds, mg/L	Yield, L/sec	Swl, m	Depth,
653300223		222405	6418300				1.1	-	457.2
653300220		221763	6418266				-	-	7.62
653300627		219855	6418192	Operational	Observation	-	- 1.2	- 40	96
653300225		223183	6418266	Operational	Observation	5512	-	5.72	6.71
643300170		781627	6418097	Operational	Stock	-	_	6.1	24.4
653300230		224774	6418243	Operational	Glock	4167	0.45	3	100.5
653300224		222956	6418179			2941	-	-	10.67
653300229		222930	6418158			6212	-	-	-
653300839		220865	6418063	Abandoned	Domestic	-	-	-	- 64
653300646		219144	6417995	Abandoned	Domestic	- 1692	- 1.25	- 60	100
653300698		219144	6418090	Operational	Stock	6124	0.5	9	24
653300698		222959	6418090	Operational	SIOCK	1884	0.5		
								-	-
653300219		221564	6417974			1942	-	-	67.06
653300222		222154	6417888			9624	5.3	18	55
653300704		218921	6417751	Operational	Irrigation	1800	-	69	96
653300184		220473	6417793	Abandoned		-	-	22.4	27.4
653300584		221541	6417765			-	3.35	9	75
653300216		221303	6417726			1685	1.26	13.72	92.96
653300609		219504	6417675			-	0.5	43.9	67.5
653300218	QUORN SILO	221355	6417605	Abandoned		-	-	-	7.47
653300185		220619	6417553			2999	0.01	7.01	8.23
653300217	QUORN SILO	221204	6417513	Abandoned		-	-	-	4.17
653300573		220554	6417426			3667	1.52	23	56.92
653300752		220342	6417359		Domestic	3920	1	-	51.8
653300186		220348	6417307			-	-	-	-

25

Unit_no	Name	Easting	Northing	Status	Use	Tds, mg/L	Yield, L/sec	Swl, m	Depth, r
653300588		219618	6417267			1524	3.16	41.15	71.93
653300728		219272	6417253		Domestic	1878	-	-	85.3
653300630		218333	6417145			1240	4.5	21.1	103
653300620		219974	6417172	Operational	Irrigation	2171	1.51	33	60
653300766		222422	6417229		Irrigation	1743	1.5	15	55
653300195		221158	6417178	Operational	Industrial	6255	-	9.14	27.43
653300197		220757	6417053			-	-	-	60.05
653300749		220252	6417029		Irrigation	2716	0.6	-	42.6
653300623		219161	6416991	Operational	Domestic	2642	1	21.3	48
653300196		221085	6417030			2387	1.89	16.76	88.39
643300171	PATERSONS WELL	781893	6416897	Operational	Stock	882	-	0.2	4.55
653300189		219125	6416844			1742	-	-	-
643300507		782214	6416788		Irrigation	-	6.2	8	34
653300637		219545	6416816	Operational	Domestic	1906	1.25	8.5	30
653300187		219900	6416747			2128	-	-	-
653300192		218606	6416676	Operational	Stock	1751	1.9	-	18
653300190		218821	6416667			1605	2.53	-	7.05
653300669		220649	6416705			2909	5	20	32
643300172		782245	6416620	Operational		430	8	5.05	21.3
653300191		218960	6416650			-	-	1.8	2.2
653300645		219254	6416654			2188	1.26	12	63
653300618		219253	6416652	Operational	Irrigation	-	0.76	-	9.45
653300629		217872	6416599	Operational	Town Water Supply (Public/Muncipal)	-	2.5	12.4	56
653300232		223830	6416713			-	-	-	24.38
653300613		219935	6416597			2064	1.12	18.2	32

26

Unit_no	Name	Easting	Northing	Status	Use	Tds, mg/L	Yield, L/sec	Swl, m	Depth, n
653300188		219463	6416545			2008	0.16	11	207
653300198		220049	6416513			1732	-	-	33
653300200		219644	6416466			1945	0.75	6	45.9
653300621		220167	6416478			2141	0.63	10	59.44
653300233		223842	6416571			-	-	0.3	45.72
653300199		219862	6416400	Operational	Domestic	1681	0.26	-	26.21
653300201		219372	6416368	Operational	Domestic	1278	2.53	14.6	34.5
653300231		225427	6416455			4757	0.08	16.15	92
653300202		218856	6416150	Operational	Stock	1706	-	-	-
643300173		781251	6416116	Operational	Stock	1413	-	3	18.3
653300193		218044	6416045			1027	3.79	6.71	30.48
653300760		222442	6416159			-	0.5	27.4	92
653300194		218105	6415933	Operational	Domestic	1334	-	-	30.5
653300745		223022	6415979		Irrigation	12650	0.3	-	71.6
653300829		220260	6415871		Irrigation	-	4	36	114
653300204		221837	6415715			2866	-	12.65	41.5
653300203		218901	6415535	Operational	Stock	2866	-	8.9	14.2
653300235		224947	6415507			297	-	21.6	64
653300205		219786	6415234	Abandoned		4085	0.1	14.95	40.2
653300240		223729	6415087	Operational	Domestic	2950	1.87	44.8	82.9
653300678		223689	6415016			3299	1.25	42.6	92
653300149		245769	6415511	Operational	Stock	2950	-	-	18
643300174		780810	6414768	Operational	Stock	2909	-	27	30
653300239		223595	6414854	Operational	Domestic	2747	0.03	26.2	28.3
653300234		224822	6414841			4555	0.13	24.38	30.48

27

Unit_no	Name	Easting	Northing	Status	Use	Tds,	Yield, L/sec	Swl, m	Depth,
						mg/L			
653300238		223805	6414431			-	-	-	30.48
653300206		221109	6414276	Operational	Stock	1745	1.26	21	67
653300742		221042	6414259		Stock	1889	0.5	-	42.6
653300597		238046	6414633			2539	5	9.7	91
653300207		220796	6414139			1442	-	-	42.67
653300750		219503	6414078		Stock	2574	1	-	67
653300725		221747	6414029		Stock	3654	1	-	41.4
653300236		224927	6414109	Operational	Stock	6786	-	24	29.9
653300208		221892	6413854			6212	-	-	-
653300840		224776	6413930		Stock	-	0.6	21.3	41
643300175	E & WS DEPT	775995	6413074			2171	-	-	-
653300237		224356	6412997	Operational	Domestic	3359	-	55	65
653300157		248550	6413620			13495	-	-	28.35
653300323		229223	6413118	Operational	Stock	4501	-	19.3	95.85
653300153		241772	6413423			1600	-	11.3	36.58
653300212		218743	6412767	Operational	Town Water Supply (Public/Muncipal)	1692	1.25	30	49
653300209		220460	6412790	Dry		10182	-	-	76.2
653300707		224322	6412879		Stock	4100	0.75	51.8	70.7
653300607		224226	6412797			3827	0.44	57	66
653300210		221056	6412669	Operational	Domestic	921	-	34.3	46
643300176		780581	6412242	Operational	Stock	1636	-	-	150
643300185		782165	6411621	Operational	Irrigation	4437	0.57	-	87
653300211		218488	6411451			-	-	-	60
653300215		221647	6411528	Operational	Domestic	3301	-	62.2	63
653300156		246659	6412131			12544	-	7.5	18.8

28

Unit_no	Name	Easting	Northing	Status	Use	Tds,	Yield, L/sec	Swl, m	Depth, m
						mg/L			
653300326		231738	6411633			4355	-	10.06	13.11
653300213		220979	6411303			2109	-	-	89
653300214		221478	6411190	Operational	Stock	2950	0.32	67	73
643300177		779413	6410631	Operational	Domestic	1245	-	0.85	8.7

29

APPENDIX B

WELL YIELD

Well Yield L/s	No. of wells	%
< 1.5	67	71
1.5 – 3.0	13	14
3.0 - 5.0	10	11
> 5.0	4	4
TOTAL	94	100

APPENDIX C

DATE	VOLUME PUMPED	DATE	VOLUME PUMPED	DATE	
	kL		kL		kL
1.4.87	139	30.3.88	1066	5.4.89	2811
8.4.87	454	6.4.88	997	12.4.89	2747
15.4.87	178	13.4.88	1081	19.4.89	1764
22.4.87	133	20.4.88	1074	26.4.89	2315
29.4.87	181	27.4.88	972	3.5.89	1165
6.5.87	191	4.5.88	414	10.5.89	431
13.5.87	134	22.6.88	336	17.5.89	1632
19.8.87	158	31.8.88	701	24.5.89	1894
26.8.87	329	7.9.88	858	31.5.89	1609
2.9.87	1,105	14.9.88	932	7.6.89	1817
9.9.87	1114	21.9.88	909	14.6.89	1939
16.9.87	1116	28.9.88	981	21.6.89	395
23.9.87	1095	5.10.88	1119	12.7.89	4202
30.9.87	1071	12.10.88	1152	19.7.89	1523
7.10.87	1082	19.10.88	1083	26.7.89	1521
14.10.87	1114	26.10.88	1092	2.8.89	1588
21.10.87	1069	2.11.88	1090	9.8.89	2048
28.10.87	1092	9.11.88	1122	16.8.89	323
4.11.87	1145	16.11.88	1108	23.8.89	1826
11.11.87	1094	23.11.88	1084	30.8.89	1358
18.11.87	1107	30.11.88	1091	6.9.89	2059
25.11.87	1091	7.12.88	536	13.9.89	2175
2.12.87	1056	14.12.88	748	20.9.89	2351
9.12.87	1067	16.12.88	386	27.9.89	2657
16.12.87	1102	21.12.88	2973	4.10.89	2876
23.12.87	1072	28.12.88	3121	11.10.89	2488
30.12.87	1105	4.1.89	3785	18.10.89	1408
6.1.88	1111	11.1.89	3051	25.10.89	1471
13.1.88	1024	18.1.89	3088	1.11.89	1614
20.1.88	1106	25.1.89	2909	8.11.89	1333
27.1.88	1107	1.2.89	4442	15.11.89	1520
3.2.88	1110	8.2.89	4570	22.11.89	201
10.2.88	1069	15.2.89	4157	28.2.90	116
17.2.88	1097	22.2.89	4354	4.4.90	1794
24.2.88	1107	1.3.89	3962	11.4.90	1891
2.3.88	1111	8.3.89	4656	18.4.90	2923
9.3.88	1106	15.3.89	1695	24.4.90	1516
16.3.88	1110	22.3.89	1908	2.5.90	2421
23.3.88	1105	29.3.89	2061	9.5.90	2935

... - |*-*|-.41 ... f. 0 4

DATE	VOLUME PUMPED kL	DATE	VOLUME PUMPED kL	DATE	VOLUME PUMPED kL
16.5.90	2472	13.3.91	4339	5.2.91	3647
23.5.90	2272	20.3.91	4213	12.2.92	2204
30.5.90	2030	27.3.91	3469	19.2.92	3060
6.6.90	1558	3.4.91	1852	26.2.92	4591
13.6.90	2120	10.4.91	3071	4.3.92	3030
20.6.90	1736	17.4.91	980	11.3.92	2788
27.6.90	1646	1.5.91	1432	18.3.92	2349
4.7.90	1928	12.6.91	487	25.3.92	2117
11.7.90	1623	19.6.91	1605	8.4.92	1728
18.7.90	1576	26.6.91	1640	15.4.92	1814
25.7.90	1660	3.7.91	1537	22.4.82	1543
1.8.90	1881	10.7.91	1598	29.4.92	0
8.8.90	1702	17.7.91	1722	6.5.92	81
15.8.90	1625	24.7.91	1703	13.5.92	1354
22.8.90	1636	31.7.91	1519	20.5.92	1860
29.8.90	1831	7.8.91	1875	27.5.92	1113
5.9.90	1827	14.8.91	1966	3.6.92	911
12.9.90	2172	21.8.91	1998	10.6.92	2121
3.10.90	1954	28.8.91	2091	17.6.92	3022
10.10.90	3210	4.9.91	1992	24.6.92	1668
17.10.90	3156	11.9.91	3015	1.7.92	1763
24.10.90	2626	18.9.91	2534	8.7.92	2020
31.10.90	3508	25.9.91	2080	15.7.92	2151
7.11.90	3850	2.10.91	1314	22.7.92	1867
14.11.90	4128	9.10.91	1250	29.7.92	1974
21.11.90	4139	16.10.91	1785	5.8.92	2420
28.11.90	4092	23.10.91	1758	12.8.92	1687
5.12.90	4327	30.10.91	2371	19.8.92	1754
12.12.90	3400	6.11.91	2145	26.8.92	2143
19.12.90	4258	13.11.91	1844	2.9.92	2020
26.12.90	4126	20.11.91	2252	9.9.92	1683
2.1.91	4280	27.11.91	2605	16.9.92	2675
9.1.91	3835	4.12.91	3072	23.9.92	2160
16.1.91	4380	11.12.91	3270	30.9.92	1843
23.1.91	3802	18.12.91	3243	7.10.92	1934
30.1.91	3493	24.12.91	2833	14.10.92	2043
6.2.91	4526	31.12.91	3551	21.10.92	1939
13.2.91	4067	8.1.92	3740	28.10.92	2924
20.2.91	2495	15.1.92	3356	4.11.92	1919
27.2.91	4715	22.1.92	3653	11.11.92	2308
6.3.91	4732	29.1.92	2758	18.11.92	2895

DATE	VOLUME PUMPED kL	DATE	VOLUME PUMPED kL	DATE	VOLUME PUMPED kL
25.11.92	1906	1.9.93	2228	15.6.94	1622
2.12.92	2874	8.9.93	1483	22.6.94	1780
7.12.92	1288	15.9.93	1296	29.6.94	772
9.12.92	1740	22.9.93	2131	6.7.94	2058
16.12.92	3222	29.9.93	3201	13.7.94	1930
23.12.92	1787	6.10.93	1889	20.7.94	2195
30.12.92	2842	13.10.93	2690	27.7.94	2370
6.1.93	4122	20.10.93	2106	3.8.94	1840
13.1.93	3202	27.10.93	2981	10.8.94	1898
20.1.93	3159	3.11.93	2739	17.8.94	2148
27.1.93	1944	10.11.93	3766	24.8.94	2548
3.2.93	3685	17.11.93	3305	31.8.94	2964
10.2.93	2519	24.11.93	846	7.9.94	2632
17.2.93	3899	1.12.93	3731	14.9.94	2521
24.2.93	2907	8.12.93	429	21.9.94	2999
3.3.93	4018	15.12.93	1854	28.9.94	3402
10.3.93	3849	22.12.93	1571	5.10.94	2778
17.3.93	517	29.12.93	2509	12.10.94	2797
24.3.93	3418	5.1.94	1930	19.10.94	4112
31.3.93	3027	12.1.94	3181	26.10.94	3802
7.4.93	3384	19.1.94	2093	2.11.94	2856
14.4.93	3892	25.1.94	2081	9.11.94	2922
21.4.93	4113	2.2.94	1696	16.11.94	2927
28.4.93	3746	9.2.94	1711	23.11.94	3661
5.5.93	3223	16.2.94	1467	30.11.94	4140
12.5.93	2475	23.2.94	430	7.12.94	4067
19.5.93	2816	2.3.94	454	14.12.94	3032
26.5.93	1769	9.3.94	783	21.12.94	3873
2.6.93	2852	16.3.94	1161	28.12.94	2906
9.6.93	4979	23.3.94	1269	4.1.95	3720
16.6.93	2288	30.3.94	67	11.1.95	4330
23.6.93	1696	6.4.94	25	18.1.95	2007
30.6.93	2719	13.4.94	17	25.1.95	2962
7.7.93	2138	20.4.94	0	1.2.95	1938
14.7.93	2022	27.4.94	2578	8.2.95	2428
21.7.93	2022	4.5.94	0	15.2.95	3510
28.7.93	695	11.5.94	31	22.2.95	3661
4.8.93	1532	18.5.94	27	1.3.95	3671
4.6.93 11.8.93	1552	25.5.94	2535	8.3.95	2079
18.8.93	1729	1.6.94	2907	15.3.95	3077
25.8.93	2283	8.6.94	2391	22.3.95	3534

DATE	VOLUME PUMPED	DATE	VOLUME PUMPED kL	DATE	VOLUME PUMPED kL
29.3.95	3266	10.1.96	1224	11.12.96	2644
5.4.95	2505	6.3.96	2345	18.12.96	3917
12.4.95	1844	13.3.96	3401	24.12.96	3385
19.4.95	2758	20.3.96	2638	31.12.96	3455
26.4.95	2041	27.3.96	3510	8.1.97	4708
3.5.95	1930	3.4.96	2758	15.1.97	3969
10.5.95	1620	10.4.96	3157	22.1.97	4152
17.5.95	1765	17.4.96	2231	29.1.97	3149
24.5.95	1951	24.4.96	2708	5.2.97	4108
2.6.95	1938	1.5.96	2821	12.2.97	1823
8.6.95	1513	8.5.96	2531	19.2.97	3241
14.6.95	1210	15.5.96	2404	26.2.97	3834
21.6.95	1338	22.5.96	2161	5.3.97	3023
28.6.95	1629	29.5.96	1985	12.3.97	4258
6.7.95	1730	5.6.96	1454	19.3.97	3990
12.7.95	1674	12.6.96	983	26.3.97	3492
19.7.95	1672	19.6.96	1366	2.4.97	3267
26.7.95	1813	26.6.96	1246	9.4.97	3743
2.8.95	1567	3.7.96	1438	16.4.97	3234
9.8.95	2050	10.7.96	1523	23.4.97	3338
16.8.95	2739	17.7.96	1533	30.4.97	3246
23.8.95	2282	23.7.96	1298	7.5.97	2502
30.8.95	2059	31.7.96	1722	14.5.97	2064
6.9.95	1954	7.8.96	1684	21.5.97	2311
13.9.95	2157	14.8.96	309	28.5.97	1736
20.9.95	2893	21.8.96	1728	2.6.97	1710
27.9.95	2229	28.8.96	1604	4.6.97	2360
4.10.95	3004	4.9.96	1880	11.9.97	3504
11.10.95	3802	11.9.96	2561	18.6.97	2585
18.10.95	3402	18.9.96	3319	25.6.97	2556
25.10.95	1308	25.9.96	2563	2.7.97	2882
1.11.95	3177	2.10.96	2441	9.7.97	2990
8.11.95	1598	9.10.96	2587	16.7.97	2957
15.11.95	2887	16.10.96	3625	23.7.97	3074
22.11.95	3078	23.10.96	3839	30.7.97	3713
29.11.95	3741	30.10.96	3347	7.8.97	3476
6.12.95	2848	6.11.96	2871	14.8.97	1642
13.12.95	3147	13.11.96	3784	20.8.97	1879
20.12.95	3885	20.11.96	2741	26.8.97	2191
27.12.95	3218	27.11.96	3774	3.9.97	2697
3.1.96	3389	4.12.96	3700	10.9.97	2648

DATE	VOLUME PUMPED kL	DATE	VOLUME PUMPED kL	DATE	VOLUME PUMPED kL
17.9.97	2714	1.7.98	2919	4.8.99	2148
25.9.97	2845	8.7.98	3066	11.8.99	1595
1.10.97	2855	15.7.98	3615	18.8.99	1893
8.10.97	3687	22.7.98	2672	25.8.99	2735
15.10.97	3025	29.7.98	3110	1.9.99	2403
22.10.97	2485	5.8.98	3047	8.9.99	2325
29.10.97	2895	12.8.98	4786	15.9.99	2259
6.11.97	3227	19.8.98	4970	22.9.99	2513
12.11.97	2671	26.8.98	2382	29.9.99	2992
20.11.97	3331	2.9.98	3817	6.10.99	2822
26.11.97	3567	9.9.98	3684	14.10.99	3139
5.12.97	5821	16.9.98	3267	20.10.99	2586
	2842	23.9.98	3604	20.10.99	2597
11.12.97 17.12.97					
	2455	30.9.98	4128	3.11.99	1950 2978
24.12.97	3037	6.10.98	2682	10.11.99	
31.12.97	3940	13.10.98	3191	17.11.99	3052
8.1.98	3842	10.2.99	3490	26.11.99	3320
14.1.98	1995	17.2.99	3735	2.12.99	2582
21.1.98	3843	24.2.99	1603	8.12.99	2625
28.1.98	3946	3.3.99	2930	15.12.99	4297
4.2.98	3829	10.3.99	2901	22.12.99	3573
11.2.98	3142	17.3.99	4196	30.12.99	2969
18.2.98	3276	24.3.99	2384	5.1.00	3180
25.2.98	4325	31.3.99	3792	12.1.00	4109
4.3.98	3727	7.4.99	2535	19.1.00	4173
11.3.98	4325	14.4.99	3536	27.1.00	2517
18.3.98	3249	22.4.99	3342	2.2.00	2952
25.3.98	3684	28.4.99	2742	10.2.00	4547
1.4.98	3846	2.2.99	2919	16.2.00	2400
8.4.98	4517	12.5.99	3379	23.2.00	2711
16.4.98	3497	19.5.99	2809	1.3.00	3412
22.4.98	2531	26.5.99	2183	8.3.00	3530
29.4.98	2255	2.6.99	1722	14.3.00	2960
7.5.98	3148	9.6.99	2377	22.3.00	3273
13.5.98	2531	16.6.99	2396	29.3.00	1706
20.5.98	2493	23.6.99	2085	5.4.00	3164
27.5.98	2052	1.7.99	2271	13.4.00	3622
3.6.98	2678	7.7.99	1490	19.4.00	2040
10.6.98	4256	14.7.99	1652	26.4.00	3516
17.6.98	2745	21.7.99	2145	1.5.00	2308
24.6.98	2312	28.7.99	3333	10.5.00	1905

DATE	VOLUME PUMPED kL	DATE	VOLUME PUMPED kL	DATE	VOLUME PUMPED kL
47 5 00		00.0.04		40.40.04	
17.5.00	1994	28.2.01	3753	12.12.01	3375
24.5.00	1941	7.3.01	4198	19.12.01	4106
31.5.00	1698	14.3.01	4214	27.12.01	4961
8.6.00	3149	21.3.01	3241	2.1.02	3397
14.6.00	2223	27.3.01	2972	9.1.02	4118
22.6.00	2716	4.4.01	4935	16.1.02	3551
28.6.00	2255	11.4.01	3585	23.1.02	3665
6.7.00	2427	18.4.01	4289	30.1.02	4014
12.7.00	1906	26.4.01	3508	6.2.02	2703
9.7.00	2273	2.5.01	3743	13.0.02	2840
26.7.00	2172	9.5.01	2724	20.2.02	2649
2.8.00	2432	16.5.01	3129		
9.8.00	2352	23.5.01	2984		
16.8.00	2199	30.5.01	2859		
24.8.00	2614	6.6.01	2736		
31.8.00	2030	14.6.01	2318		
7.9.00	2538	20.6.01	1767		
13.9.00	2029	27.6.01	2450		
20.9.00	3147	4.7.01	2545		
28.9.00	3721	11.7.01	2453		
4.10.00	2661	18.7.01	1983		
11.10.00	3504	24.7.01	2454		
18.10.00	2456	1.8.01	2220		
26.10.00	3896	8.8.01	2378		
1.11.00	2844	15.8.01	2565		
8.11.00	3731	22.8.01	2559		
14.11.00	2170	29.8.01	2485		
22.11.00	3745	5.9.01	1895		
28.11.00	3772	12.9.01	1684		
6.12.00	3746	19.9.01	2330		
13.12.00	3735	26.9.01	2853		
20.12.00	4226	3.10.01	3182		
27.12.00	3861	10.10.01	2931		
3.1.01	4671	17.10.01	3173		
10.1.01	3691	24.10.01	3420		
17.1.01	4421	2.11.01	4384		
24.1.01	4030	7.11.01	2875		
31.1.01	3670	14.11.01	3569		
7.2.01	3857	21.11.01	4526		
14.2.01	3754	28.11.01	3290		
21.2.01	4230	5.12.01	3310		

APPENDIX D

Summary of Drilling Details

Unit Number	6533-864	6533-865	
Permit Number	58571	58572	
Date drilled	23/05/2002	24/05/2002	
Drilling method	Rotary hammer with air circulation	Rotary hammer with air circulation	
Well diameter (m)	0.14	0.14	
Depth (m)	80.0	120.0	
Water cut depth (m)	Damp at 56.0-63.0 m	82.0	
Yield [airlift] (L/sec)	-	1.0	
Comments	Well was dry. It was assumed that the fracture zone was poorly developed in the vicinity of the 60.0 m zone. The well was abandoned and backfilled on 24/05/2002	Well intercepted fractures at interval between 82.0 and 108.0 m. There was increased in airlift yield as drilling progressed through the interval between 82 and 120 m.	

APPENDIX E

Borehole Log for Well 6533-864 (P/N 58571)

			0500.004	
Unit_no:			6533-864	
Total dep	oth (m):		80.00	
Depth to	Depth to water cut (m):		-	
Depth to	standing	ı water level (m):	-	
Supply (I	L/sec):		-	
DEPT	Ή (m)	SEDIMENT/ROCK	GEOLOGICAL DESCRIPTION	
From	То	NAME		
0.0	3.0	Loam soil and pebbles	Silty loamy soil	
3.0	7.0	Clay	Pale red clay	
7.0	9.0	Clay	Greyish orange pink	
9.0	11.5	Clayey sand	Reddish brown. Sand particle size: 0.2 – 0.5 mm, rounded.	
11.5	17.0	Sandstone	Soft, pale orange sandstone	
17.0	20.0	Sandstone	Soft, pale orange sandstone.	
20.0	59.0	Sandstone	Soft, very light grey to white sandstone. Drill-cuttings were damp at the interval between 54.0 – 63.0 m.	
59.0	75.0	Sandstone	Yellow grey to light olive in colour.	
75.0	79.5	Quartzite	Quartzite	
79.5	80.0	Sandstone	Soft sandstone.	

APPENDIX F

Borehole Log for Well 6533-865 (PN 58572)

Unit_no:		6533-865		
Total depth (m):		120.00		
Depth to water cu	ıt (m):	82.00		
Depth to standing	water level (m):	58.85		
Supply (L/sec):		1.00		
DEPTH (m)	SEDIMENT/ROCK	GEOLOGICAL DESCRIPTION		
From To	NAME			
0.0 3.0	Loam soil	Silty		
3.0 8.0	Clay	Reddish brown clay		
8.0 8.5	Sandstone	White, soft, friable		
8.5 9.0	Sandstone and Clay	Overall moderately reddish brown in colour.		
9.0 12.0	Sandstone	Soft, overall moderate orange pink in colour		
12.0 18.0	Sandstone	Soft, overall very pale orange in colour. Fine to medium (0.1 – 0.6 mm) grained sandstone. Subrouded to rounded.		
18.0 72.0	Sandstone	White and soft. Fine to medium grained sandstone.		
72.0 78.0	Quartzite and sandstone	Band of quartzite interbedded with sandstone		
78.0 82.0	Sandstone	Soft, fine to medium (0.2 – 0.6 mm) subrounded to rounded quartz grained sandstone.		
82.0 96.0	Sandstone	Water cut at 82.0 m. Fracture zone. Small amount of drill-cuttings was recovered from this interval. Clayey Sandstone at intervals between 84.0 – 87.0 and 90 – 93.0 m. Overall colour of drill-cuttings is very pale orange to greyish orange.		
96.0 102.0	Quartzite	Silty quartzite. Light olive grey in colour.		
102.0 105.0	Sandstone	Silty sandstone. Predominantly medium grained sandstone.		
105.0 108.0	Quartzite	Light olive grey in colour. Small amount of drill cuttings was recovered from this interval.		
108.0 120.0	Sandstone	Soft. Fine to medium (0.1 – 0.6 mm) grained sandstone. Driller noted fair increase in flow rate at 115.0 m .		