Investigative Drilling, Aquifer and Groundwater Salinity Testing - Naracoorte Water Supply, Bool Lagoon Investigation # Investigative Drilling, Aquifer and Groundwater Salinity Testing – Naracoorte Water Supply, Bool Lagoon Investigation Jeff Lawson and Stephen Howles Department of Environment, Water and Natural Resources July, 2015 Department of Environment, Water and Natural Resources GPO Box 1047, Adelaide SA 5001 Telephone National (08) 8463 6946 International +61 8 8463 6946 Fax National (08) 8463 6999 International +61 8 8463 6999 Website <u>www.environment.sa.gov.au</u> #### Disclaimer The Department of Environment, Water and Natural Resources and its employees do not warrant or make any representation regarding the use, or results of the use, of the information contained herein as regards to its correctness, accuracy, reliability, currency or otherwise. The Department of Environment, Water and Natural Resources and its employees expressly disclaims all liability or responsibility to any person using the information or advice. Information contained in this document is correct at the time of writing. This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ © Crown in right of the State of South Australia, through the Department of Environment, Water and Natural Resources 2015 ISBN 978-1-922255-38-9 #### Preferred way to cite this publication Lawson J and Howles S, 2015, *Investigative Drilling, Aquifer and Groundwater Salinity Testing - Naracoorte Water Supply, Bool Lagoon Investigation*, DEWNR Technical note 2015/03, Government of South Australia, through the Department of Environment, Water and Natural Resources, Adelaide Download this document at: http://www.waterconnect.sa.gov.au ## Contents | Con | tents | | ii | |-----|-------|---|----| | Sum | nmary | | 1 | | 1 | Intro | duction | 2 | | 2 | Well | Design and Construction | 5 | | 3 | Geolo | ogy and Hydrogeology | 12 | | | 3.1 | STRATIGRAPHY | 12 | | | 3.2 | AQUITARD ASSESSMENT | 12 | | | 3.3 | HYDROGEOLOGY | 13 | | | 3.4 | AQUIFER ASSESSMENT | 14 | | 4 | Aquif | er Test Theory | 15 | | | 4.1 | Aquifer Test Objectives | 15 | | | 4.2 | Step Drawdown Test | 15 | | | 4.3 | Constant Rate Discharge Test | 16 | | | 4.4 | Groundwater Quality Test | 17 | | 5 | Targe | et Well Aquifer Test Results | 18 | | | 5.1 | Aquifer Test Procedure | 18 | | | 5.2 | Step Drawdown Test | 18 | | | 5.3 | Constant Rate Discharge Test | 20 | | | 5.3.1 | Design | 20 | | | 5.3.2 | Dilwyn Formation production Well 7023-7371 (ROB037), r = 0 m | 21 | | | 5.3.3 | Dilwyn observation well-3 7023-7370 (ROB036), r = 1,627 m | 23 | | | 5.3.4 | Gambier Limestone observation well 7023-7367 (ROB038), r = 23 m | 23 | | | 5.3.5 | Aquifer and aquitard hydraulic parameters | 24 | | | 5.4 | Groundwater Salinity | 26 | | 6 | Obse | rvation Well Aquifer Test Results | 27 | | | 6.1 | Aquifer test Procedure | 27 | | | 6.2 | Constant Rate Discharge Tests | 27 | | | 6.2.1 | Dilwyn Formation observation well-1 7023-7369 (KLN017) | 27 | | | 6.2.2 | Dilwyn Formation observation well-2 7023-7368 (KLN018) | 28 | | | 6.2.3 | Dilwyn Formation observation well-3 7023-7370 (ROB036) | 29 | | 7 | Concl | lusions | 31 | | 8 | Reco | mmendations | 32 | | 9 | Appe | ndices | 33 | | | 9.1 | DRILLING CONTRACTOR WELL CONSTRUCTION REPORTS | 33 | | | 9.2 | WATER WELL LOGS | 39 | | | 9.3 | DILWYN FORMATION SIEVE ANALYSIS | 64 | | | 9.4 | DILWYN FM. PROD. WELL 7023-7371 (ROB037) STEP DRAWDOWN TEST | 71 | | 10 | Refere | nces | 101 | |----|--------|--|-----| | | 9.9 | WATER CHEMISTRY | 96 | | | 9.8 | DILWYN FM. OBS. WELL-3 7023-7370 (ROB036) CONST. RATE DISCHARGE TEST | 95 | | | 9.7 | DILWYN FM. OBS. WELL-2 7023-7368 (KLN018) CONST. RATE DISCHARGE TEST | 93 | | | 9.6 | DILWYN FM. OBS. WELL-1 7023-7369 (KLN017) CONST. RATE DISCHARGE TEST | 91 | | | 9.5 | DILWYN FM. PROD. WELL 7023-7371 (ROB037) CONST. RATE DISCHARGE TEST | 73 | ### List of figures | | Figure 1 | Location of investigation area | 3 | |------|-----------|--|----| | | Figure 2 | Location of production and observation wells | 4 | | | Figure 3 | Dilwyn Formation production well 7023-7371 (ROB037) well construction diagram | 7 | | | Figure 4 | Dilwyn Formation observation well-1 7023-7369 (KLN017) well construction diagram | 8 | | | Figure 5 | Dilwyn Formation observation well-2 7023-7368 (KLN018) well construction diagram | 9 | | | Figure 6 | Dilwyn Formation observation well-3 7023-7370 (ROB036) well construction diagram | 10 | | | Figure 7 | Gambier Limestone observation well 7023-7367 (ROB038) well construction diagram | 11 | | | Figure 8 | Dilwyn Formation Production well 7023-7371 (ROB037) step drawdown test analysis Hazel method | 19 | | | Figure 9 | Constant rate discharge test drawdown all wells | 20 | | | Figure 10 | Dilwyn Formation production well 7023-7371 (ROB037) drawdown | 21 | | | Figure 11 | Dilwyn Formation production well 7023-7371 (ROB037) drawdown/residual drawdown | 22 | | | Figure 12 | Well equation prediction of Dilwyn Formation production well 7023-7371 (ROB037) drawdown | 22 | | | Figure 13 | Dilwyn Formation observation well-3 7023-7370 (ROB036) drawdown / residual drawdown | 23 | | | Figure 14 | Gambier limestone observation well 7023-7367 (ROB038) drawdown | 24 | | | Figure 15 | Dilwyn Formation observation well-3 7023-7370 (ROB036) Theis analysis | 25 | | | Figure 16 | Dilwyn Observation well-3 7023-7370 (ROB036) Hantush analysis | 26 | | | Figure 17 | Dilwyn Formation production well 7023-7371 (ROB037) groundwater salinity | 26 | | | Figure 18 | Dilwyn Formation observation well-1 7023-7369 (KLN017) drawdown / residual drawdown | 27 | | | Figure 19 | Dilwyn Formation observation well-1 7023-7369 (KLN017) groundwater salinity | 28 | | | Figure 20 | Dilwyn Formation observation well-2 7023-7368 (KLN018) drawdown / residual drawdown | 28 | | | Figure 21 | Dilwyn Formation observation well-2 7023-7368 (KLN018) groundwater salinity | 29 | | | Figure 22 | Dilwyn Formation observation well-3 7023-7370 (ROB036) drawdown / residual drawdown | 29 | | | Figure 23 | Dilwyn Formation observation well-3 7023-7370 (ROB036) groundwater salinity | 30 | | List | of table | S | | | | Table 1 | Production and observation well details | 2 | | | Table 2 | Production and observation well details | 6 | | | Table 3 | Interpreted aquitard thickness at the four locations of drilling | 13 | | | Table 4 | Aquifer test schedule | 18 | | | Table 5 | Predicted drawdown Dilwyn Formation production well 7023-7371 (ROB037) | 18 | | | Table 6 | Constant rate discharge test details | 20 | | | Table 7 | Aquifer and aquitard hydraulic parameters table format | 25 | | | Table 8 | Aquifer test details observation wells | 27 | | | Table 9 | Aquifer parameters for the three confined aquifer observation wells | 30 | ## Summary The Naracoorte town water supply is currently sourced from the confined Dilwyn Formation aquifer, which has a groundwater salinity between 1,200 and 1,300 mg/L. The Australian Drinking Water Guidelines 6 (2011) recommend that municipal supplies should aim for a salinity of less than 1,000 mg/L. The salinity in the unconfined Gambier Limestone aquifer in the Naracoorte area also exhibits salinities in the range of 1,200 to 1,500 mg/L, suggesting a downward connectivity between the aquifers, probably occurring via the Kanawinka Fault, a major stratigraphic feature located at the western edge of the Naracoorte Range. A South Australian Water Corporation (SA Water) investigation (Somaratne and Lawson, 2010) defined an area 20 to 25 kilometres south-west of Naracoorte near Bool Lagoon to be a potential source of low salinity groundwater in the Dilwyn Formation. Privately-drilled confined-aquifer production wells indicated groundwater salinities between 660 and 700 mg/L. In early 2013 the Department of Environment, Water and Natural Resources (DEWNR) was contracted by SA Water to supervise the drilling and construction of several investigation wells primarily targeting the Dilwyn Formation. Aquifer tests were conducted and groundwater quality sampling was undertaken. The unconfined Gambier Limestone and confined Dilwyn Formation in the investigation area show a groundwater head difference of 12 m, indicating natural inter-aquifer leakage has a potential to occur from the unconfined to the confined aquifer. However, the markedly different groundwater salinities between aquifers indicate limited exchange is occurring. The main aquifer test provided information through interpreted transmissivity values, groundwater salinity data and groundwater head comparisons on the degree of confinement between the Dilwyn Formation and the overlying Gambier Limestone. Both the groundwater level and groundwater salinity results indicate the aquifer is has a high level of confinement. At all investigation well sites, the confined aquifer is continuous with coarse, highly-transmissive sands capable of producing large volumes of groundwater. Aquifer tests produced low salinity groundwater from the confined Dilwyn Formation with the development of very little drawdown. The results allow SA Water to pick the best location for a well field to provide for the long term municipal water supply for Naracoorte if that becomes part of future planning. The Bool Lagoon investigation area can produce low salinity groundwater from the confined Dilwyn Formation which can be developed as a town water supply wellfield to provide the long-term solution for a Naracoorte town water supply. Salinity varies between 580 mg/L (Dilwyn Formation observation well 2) and 720 mg/L (Dilwyn Formation production
well), which is below the ADWG recommendation that municipal supplies should have salinity less than 1000 mg/L. The Bool Lagoon investigation area can provide a secure water supply from the confined aquifer contained within the Dilwyn Formation. The production and observation wells demonstrate the following features that indicate a secure supply into the future including: - Thickness of the aquifer (> than 60 m) - Very high transmissivity rates (>3,500 m²/day) - Small drawdown (<4 m from an pumping rate of 50 L/sec). ## 1 Introduction The Naracoorte water supply is provided from the confined Dilwyn Formation aquifer, which has a groundwater salinity between 1,200 and 1,300 mg/L. The Australian Drinking Water Guidelines 6 (2011) recommend that municipal supplies should aim for a salinity less than 1,000 mg/L. The salinity in the unconfined Gambier Limestone aquifer in the Naracoorte area also exhibits salinities between 1,200 to 1,500 mg/L suggesting a downward connectivity between the aquifers may be occurring via the Kanawinka Fault, a major structural stratigraphic feature located at the western edge of the Naracoorte Range. A South Australian Water Corporation (SA Water) investigation (Somaratne and Lawson, 2010) defined an area 20 to 25 kilometres south-west of Naracoorte near Bool Lagoon as a potential source of low salinity groundwater in the Dilwyn Formation. Privately-drilled confined-aquifer production wells indicated groundwater salinities between 660 and 700 mg/L. In early 2013 the Department of Environment, Water and Natural Resources (DEWNR) was contracted by SA Water to supervise the drilling and construction of several wells. SA Water engaged two drilling contractors Water Dynamics and Thompson Drilling. The project involved the drilling and construction of one production well 7023-7371 (ROB037) completed in the Dilwyn Formation, three observation wells completed in the Dilwyn Formation [7023-7369 (KLN017), 7023-7368 (KLN018), 7023-7370 (ROB036)] and one observation well completed in the Gambier Limestone [7023-7367 (ROB038)]. The sites were selected by SA Water to target the first sand unit of the Dilwyn Formation which was expected to contain the lowest salinity groundwater. The southern well (7023–7369 KLN017) was located in the confined aquifer groundwater flow path leading from the confined aquifer recharge zone in the Nangwarry area. The eastern well (7023–7368 KLN018) allowed determination of the Dilwyn Formation to the east of the groundwater flow path. An additional well at this site was completed in the shallow sandstone aquifer adjacent to the confined well, to supply water for drilling and also allowed the head difference between the aquifers to be determined. The well details are given in Table 1 and the locations shown in Figure 1 and 2. DEWNR Groundwater Technical Services conducted aquifer testing on all four wells completed in the Dilwyn Formation. A 72 hour (3 day) duration aquifer test was conducted on the production well, followed by 24 hour (1 day) of recovery monitoring. The objective of this test was to determine the hydraulic connection between the target formation, the Dilwyn Formation, and the overlying Gambier Limestone and any changes in groundwater salinity. The Gambier Limestone observation well was completed at the base of limestone to determine if leakage could be induced downwards when the confined aquifer was pumped. This was required to address any concerns from local residents that development of a town water supply well field in the Dilwyn Formation may affect the Gambier Limestone and in-turn the hydrology of Bool Lagoon. This report discusses the drilling and construction of the wells and the results of the aquifer tests which formed the preliminary phase of an investigation into a new water supply for Naracoorte. This report format is in the form and level of detail agreed between SA Water and DEWNR. **Table 1** Production and observation well details | Unit No.Obs. No.Permit No.PurposeTarget Aquifer7023-7371ROB037231396Production wellDilwyn Formation7023-7369KLN017229330Observation well-1Dilwyn Formation7023-7368KLN018229306Observation well-2Dilwyn Formation7023-7370ROB036229331Observation well-3Dilwyn Formation7023-7367ROB038229304Observation wellGambier Limestone7023-7379KLN016Observation wellShallow Sandstone | | | | | | |--|-----------|----------|------------|--------------------|-------------------| | 7023-7369 KLN017 229330 Observation well-1 Dilwyn Formation 7023-7368 KLN018 229306 Observation well-2 Dilwyn Formation 7023-7370 ROB036 229331 Observation well-3 Dilwyn Formation 7023-7367 ROB038 229304 Observation well Gambier Limestone | Unit No. | Obs. No. | Permit No. | Purpose | Target Aquifer | | 7023-7368KLN018229306Observation well-2Dilwyn Formation7023-7370ROB036229331Observation well-3Dilwyn Formation7023-7367ROB038229304Observation wellGambier Limestone | 7023-7371 | ROB037 | 231396 | Production well | Dilwyn Formation | | 7023-7370 ROB036 229331 Observation well-3 Dilwyn Formation
7023-7367 ROB038 229304 Observation well Gambier Limestone | 7023-7369 | KLN017 | 229330 | Observation well-1 | Dilwyn Formation | | 7023-7367 ROB038 229304 Observation well Gambier Limestone | 7023-7368 | KLN018 | 229306 | Observation well-2 | Dilwyn Formation | | | 7023-7370 | ROB036 | 229331 | Observation well-3 | Dilwyn Formation | | 7023-7379 KLN016 Observation well Shallow Sandstone | 7023-7367 | ROB038 | 229304 | Observation well | Gambier Limestone | | | 7023-7379 | KLN016 | | Observation well | Shallow Sandstone | Figure 1 Location of investigation area Figure 2 Location of production and observation wells ## 2 Well Design and Construction Three confined aquifer wells 7023-5082, 7023-5678, 7023-1850 (KLN010) had been previously drilled in the investigation area but had not been lithologically logged. Strata samples from these wells were logged to obtain a better understanding of the stratigraphy prior to commencing the new drilling program. Investigation holes were drilled at the site of the Dilwyn Formation production well 7023-7371 (ROB037) and Dilwyn Formation observation well-2 7023-7368 (KLN018) to inform well design. The information allowed the final design of the wells to be determined and allowed exact lengths of casing and screens to be pre-ordered prior to drilling and construction. The Drilling Contractor Well Construction Reports are given in Appendix 9.1. The water well log (including lithological / stratigraphic description) for the previously drilled wells and the new wells is given in Appendix 9.2. Sieve analysis curves for the Dilwyn Formation production well 7023-7371 (ROB037) are given in Appendix 9.3. The details of the drilling and construction of the production well are given in Table 2. Well construction diagrams are given in Figures 3 to Figure 7. - The sandstone observation well 7023-7379 (KLN016) was completed on 3/2/2014. - The Gambier Limestone observation well 7023-7367 (ROB038) was completed on 9/4/2014 using permit number 229304. The casing was tremie line cemented in place. - Dilwyn Formation observation well-2 7023-7368 (KLN018) was completed on 12/4/2014 using permit number 229306. The casing was pressure cemented using drill pipe. - Dilwyn Formation observation well-1 7023-7369 (KLN017) was drilled completed on 4/5/2014 using permit number 229330. The casing was pressure cemented using drill pipe. - Dilwyn Formation observation well-3 7023-7370 (ROB036) was completed on 7/5/2014 using permit number 229331. The casing was pressure cemented using drill pipe. - The Dilwyn Formation production well 7023-7371 (ROB037) was completed on 14/5/2014 using permit number 231396. The casing was pressure cemented using drill pipe. Table 2 Production and observation well details | Well Number | Drilling depths and diameters (m) | Casing and Production Zone Details (m) | |---|--|--| | Dilwyn Fm.prod. Well 7023-7371 (ROB037) | 0 – 7 and 560 mm
7 – 145 and 380 mm
145 – 157.5 and 250 mm | 0 – 7 and 395 mm Steel 0 – 144 and 254 mm FRP 141 – 144.5 and 203 mm Stainless Steel 144.5 – 149.7 and 200 mm Stainless Steel Screen – 0.6 mm aperture 149.7 – 154.5 and 200 mm Stainless Steel screen – 1 mm aperture 154.5 – 156.7 203 mm Stainless steel sump and end cap | | Gambier Limestone obs. well 7023-7367
(ROB038) | 0 – 6 and 310 mm | 0 – 6 and 250 mm Steel | | | 6 – 62 and 230 mm
62 – 80 and 160 mm | 0 – 60 and 160 mm PVC
Open hole 60 to 80 . | | Dilwyn Fm. obs. well-1 7023-7369 (KLN017) | 0 – 6 and 350 mm
6 – 220 and 230 mm
220 – 234 and 160 mm | 0 – 6 and 250 mm Steel 0 – 216 and 161 mm PVC 203 – 225 and 100 mm PVC 225 – 231 and 96 mm ID Stainless Steel with 0.5 mm aperture. 231 – 233 and 96 mm PVC sump and end cap | | Dilwyn Fm. obs. well-2 7023-7368 (KLN018) | 0 – 6 and 310 mm
6 – 172 and 230 mm
172 – 186 and 160 mm | 0 – 6 and 250 mm Steel
0 – 165 and 161 mm PVC
153 – 177.7 and 100 mm PVC
177.5 – 183.5 and 96 mm ID Stainless
Steel with 0.5 mm aperture
183.5 – 185.5 and 100 mm PVC sump and
end cap | | Dilwyn Fm. obs. well-3 7023-7370 (ROB036) | 0 – 6 and 350 mm
6 – 154 and 230 mm
154 – 162 and 160 mm | 0 – 6 and 250 mm
Steel
0 – 150 and 161 mm PVC
131.8 – 153.8 and 100 mm PVC
153.8 – 159.8 and 96 mm ID Stainless
Steel with 0.5 mm aperture
159.8 – 161.8 and 100 mm PVC sump and
end cap | | Sandstone obs. well 7023-7379 (KLN016) | 0 – 8.6 and 205 mm | 0 – 8.6 and 159 mm PVC
Slotted from 2.3 to 8.6 | Figure 3 Dilwyn Formation production well 7023-7371 (ROB037) well construction diagram Figure 4 Dilwyn Formation observation well-1 7023-7369 (KLN017) well construction diagram Figure 5 Dilwyn Formation observation well-2 7023-7368 (KLN018) well construction diagram Figure 6 Dilwyn Formation observation well-3 7023-7370 (ROB036) well construction diagram Figure 7 Gambier Limestone observation well 7023-7367 (ROB038) well construction diagram ## 3 Geology and Hydrogeology #### 3.1 STRATIGRAPHY The investigation area is located to the west of the uplifted and Kanawinka Fault controlled Naracoorte Range, resulting in deeper intersection depths for the Dilwyn Formation. The stratigraphy in the investigation area is further complicated by fault activity. At the Penola town water supply well #7 the top of the Dilwyn Formation clay is intersected 107 m below ground surface. At Dilwyn Formation observation well-1 7023-7369 (KLN017) the same surface is intersected at 192 m below ground surface. Three additional wells as part of the program were drilled further north across typically flat country with the aquitard surface intersected at the following depths: - 114 m in Dilwyn Formation production well 7023-7371 (ROB037) - 150 m in Dilwyn Formation observation well-2 7023-7368 (KLN018) - 134 m in Dilwyn Formation observation well-3 7023-7370 (ROB036). The fault controlled surfaces will be explored further in a more detailed investigation report in preparation by Lawson. #### 3.2 AQUITARD ASSESSMENT Within the Tertiary section of the Gambier Basin, there are two aquifers generally containing low salinity groundwater: - The unconfined Gambier Limestone often referred to as the Tertiary Limestone Aquifer (TLA). Over most of the region this is overlain by a saturated sandstone section but both units are hydraulically inter-connected. - A deeper confined aquifer located within the Dilwyn Formation and referred to as the Tertiary Confined Sand Aquifer (TCSA) These aquifers are isolated from each other by a clay aquitard which is the unit located at the top of the Dilwyn Formation. In most areas there is a stratigraphic transition unit located above the clay unit known as the Mepunga Formation. This can be observed as a light brown clay, but can also occur only as a sand aquifer and in many cases is very thin. The Dilwyn Formation clay aquitard can vary from 2 to 10 m in thickness and can occur either as a dense clay or a sandy clay. The vertical hydraulic gradient and hydraulic conductivity of the aquitard control the extent of leakage occurring between the two aquifers. In the investigation area a major consideration was whether leakage could occur between the unconfined and confined aquifers resulting in possible inducement of higher salinity groundwater downwards. From the drilling program an observed head difference of about 12 m occurs, meaning the confined aquifer water level is lower than the unconfined water level, creating a potential pressure differential to allow groundwater to leak downwards. Inter aquifer leakage through the region occurs naturally via the aquitard, however if the clay is thick and dense this may take a long time to occur. In the study area three stratigraphic units form the aquitard: - Narrawaturk Marl a basal limestone marl with strong glauconitic staining. The top of the unit can be difficult to determine as many parts of the limestone can be glauconitically stained. - Mepunga Formation occurs both as a marl/clay and also as a sand unit. It can both be an aquitard but also have a transmissive section. - Dilwyn Formation C1 Aquitard the thick dark clays at the top of the formation. The sand content embedded in the clay can vary but it is commonly observed as a strongly bound clay. Table 3 shows that the total aquitard is thickest at around 100 m at the southern end of the investigation area. The densest section at the C1 aquitard is 21 m thick. At Dilwyn Formation observation well-3 7023-7370 (ROB036), 1.5 km west, the C1 aquitard is 12 m thick. To put these numbers in context, in the Nangwarry forest area where the most recharge is understood to occur to the confined aquifer, the aquitard is often 5 m or less in thickness (Holmes and Colville 1970, Love 1991, Brown, 2000). Table 3 Interpreted aquitard thickness at the four locations of drilling | Well Identification | Formation | Depth from and to | Thickness | |--|---------------------|-------------------|-----------| | Dilwyn Formation observation well-1 7023-7369 (KLN017) | Narrawaturk Marl | 112 – 142 | 30 | | | Mepunga Formation | 142 – 192 | 50 | | | Dilwyn Formation C1 | 192 – 213 | 21 | | | | TOTAL | 101 | | Dilwyn Formation observation well-2 7023-7368 (KLN018) | Narrawaturk Marl | 80 – 92 | 12 | | | Mepunga Formation | 92 – 150 | 58 | | | Dilwyn Formation C1 | 150 – 165 | 15 | | | | TOTAL | 85 | | Dilwyn Formation observation well-3 7023-7370 (ROB036) | Narrawaturk Marl | 82 – 113 | 31 | | | Mepunga Formation | 113 – 134 | 21 | | | Dilwyn Formation C1 | 134 – 146 | 12 | | | | TOTAL | 64 | | Dilwyn Formation production well 7023-7371 (ROB037) | Narrawaturk Marl | 94 – 104 | 10 | | | Mepunga Formation | 104 – 114 | 10 | | | Dilwyn Formation C1 | 114 - 138 | 24 | | | | TOTAL | 44 | #### 3.3 HYDROGEOLOGY The difference in the hydraulic head between a confined and unconfined aquifer can be an initial indication of potential hydraulic connectivity. If the water levels were similar hydraulic inter-connectivity would be expected be high. At Mount Gambier a 16 m head difference exists between the two aquifers, although across some faults this has been observed to be less indicating some degree of connectivity. In the investigation area there were two sites where a head difference could be measured: - The confined Dilwyn Formation observation well-2 7023-7368 (KLN018) had a reduced groundwater level of 36.88 m (December 2014) and the unconfined sandstone observation well 7023-7379 (KLN016) had a reduced groundwater level of 49.52 m (December 2014), indicating a head difference of 12.64 m and the potential for downward leakage. - 2. The confined Dilwyn Formation production well 7023-7371 (ROB037) had a reduced groundwater level of 47.04 m (December 2014) and the unconfined Gambier Limestone observation well 7023-7367 (ROB038) had a reduced groundwater level of 35.72 m (December 2014), indicating a head difference of 11.32 m and the potential for downward leakage. These are considered to be significant inter-aquifer head differences indicating that in all probability little leakage is occurring. This is further supported by the local groundwater data showing the Dilwyn Formation confined aquifer having groundwater salinities ranging from 600 to 700 mg/L, while the Gambier Limestone unconfined aquifer has groundwater salinities in the 2,000 mg/L range. #### 3.4 AQUIFER ASSESSMENT The Dilwyn Formation sand aquifer is indicated in all wells as an extensive course grained sequence as indicated by the sand sieve analysis (Appendix 9.3). None of the wells drilled in the current program penetrated the base of the formation into the next aquitard. The occurrence of coarse sand would normally indicate a potential high production and small drawdown aquifer and this was confirmed by the aquifer tests. #### Dilwyn Formation production well 7023-7371 (ROB037) Other than a thin clay band between 155 and 157 m (observed on downhole geophysics) the sand sequence is continuous from 138 m to 168 m (30 m). The 50% retained average sand size was a coarse 0.8 mm. At a depth of 168 m the sand was still present, however drilling ceased due to sufficient aquifer being available to obtain the required 50 litre per second pumping rate. This aquifer sequence could meet the long term supply for Naracoorte, especially as SA Water have indicated it intends to pump at a rate between 25 to 30 L/s, approximately half the rate the aquifer test on the production well was conducted at. #### Dilwyn Formation observation well-1 7023-7369 (KLN017) This site is similar to the production well site. The sand sequence was intersected between 213 and 232 m (19 m). The 50% retained average sand size was 0.77 mm. The well it replaced, 7023-1850 (KLN010), was logged prior to the commencement of the drilling program and indicated the sand sequence occurring from 213 to 297 m (84 m) with sections being described as gravel. The aquifer production capability at this site is very high. #### Dilwyn Formation observation well-2 7023-7368 (KLN018) At this site the sand sequence was intersected between 135 and 186 m (21 m). The 50% retained average sand size was 0.69 mm which is still a coarse grained aquifer. This site has good production capability. #### Dilwyn Formation observation well-3 7023-7370 (ROB036) At this site the sand sequence was intersected between 146 and 162 m (16 m). The 50% retained average sand size was 1.58 mm sufficient to supply large volumes of groundwater efficiently. ## 4 Aquifer Test Theory #### 4.1 Aquifer Test Objectives An aquifer test is conducted by pumping a well and observing the aquifer response or drawdown in the well and / or neighbouring observation wells. Aquifer tests are carried out on wells to determine one or more of the following: - 1. The aquifer and aquitard hydraulic parameters used to determine the ability of the aquifer to store and transmit water and which can be used in analytical and numerical groundwater modelling - 2. The existence and potentially location of sub-surface hydraulic boundaries which may affect (beneficially or adversely) the long-term hydraulic behaviour and pumping performance
of the well - 3. The long-term pumping rate of the well - 4. The design efficiency of the well - 5. The performance of the groundwater basin. In this study aquifer tests were required to determine: - 1. The maximum sustainable pumping rate for a range of pumping times - 2. Hydraulic connection between the target formation, the Dilwyn Formation, and the overlying Gambier Limestone - 3. Changes in groundwater salinity during pumping from the Dilwyn Formation. The aquifer tests that were conducted consisted of a step drawdown test and a constant rate discharge test. #### 4.2 Step Drawdown Test The step drawdown test allows determination of the hydraulic behaviour of the well under pumping stress and also evaluate well loss. The test usually consists of three or more steps at increasing pumping rates which remain constant throughout each step. The objective of step drawdown testing is to determine the well equation (below) which reflects the efficiency of the well design and relates the three parameters drawdown, pumping rate and time. This equation (ideally) allows prediction of the hydraulic performance of production wells for a design pumping rate and generation of yield drawdown curves for any given time. The well equation allows determination of the maximum sustainable pumping rate of the well and consequently the selection of a suitable pumping rate for the constant rate discharge test and long term operational pumping. $$s(t) = (a Q + c Q^2) + b \log(t) Q$$ Where: s(t) = drawdown (m) Q = pumping rate (m³/min) t = time (min) a = constant related to well loss for laminar flow c = constant related to well loss for turbulent flow b = constant related to aquifer loss for laminar flow and, Well loss (m) = $a Q + c Q^2$ Aquifer loss (m) = $b \log(t) Q$ Well efficiency = aquifer loss as a percentage of S(t) The specific capacity is defined as: SC = Q/S = (L/s)/m of drawdown #### 4.3 Constant Rate Discharge Test The constant rate discharge test allows determination of the hydraulic behaviour of the aquifer system under longer term pumping stress. This test is conducted at a constant pumping rate for a duration commensurate with the intended use of the well, however this is often compromised by the cost of running long-term tests. The drawdown (water level) data collected from the constant rate discharge test allows determination of: - Aquifer and aquitard hydraulic parameters - Presence of hydraulic boundaries, which may affect pumping sustainability under long-term operational pumping - Dewatering of the aquifer system, which may affect pumping sustainability under long-term operational pumping - Interference with neighbouring production wells. The constant rate discharge test should ideally be followed by a period of groundwater-level monitoring during the recovery of the well, although this is frequently not undertaken to reduce cost. Recovery is ideally monitored until 95% of the drawdown has been recovered. The residual drawdown (water level) data collected from the recovery monitoring can be used to determine whether interference effects are present from either recharge boundaries, or conversely from impermeable boundaries or dewatering of the aquifer: - If no interference is present, the extrapolated residual drawdown should intersect the zero residual drawdown line at t/t1 = 1 - If a recharge boundary has been encountered, the line will intersect the zero residual drawdown line at a value of t/t1> 1 - If dewatering has occurred or an impermeable boundary has been encountered, the line will intersect the zero residual drawdown line at a value of t/t1 < 1. Water level measurements made at observation wells during aquifer tests provide important data for gaining a better understanding of the broader aquifer system. Data are more reliable than those measured in the production well where turbulence may exist due to the pump. The data indicate the extent of the hydraulic influence of the production well and allow more accurate determination of aquifer and aquitard hydraulic parameters. #### 4.4 Groundwater Quality Test Preliminary groundwater sampling for a town water supply production well with domestic application should be tested for the following suite of chemical parameters (G Dworak and J West (SA Water) 2011 pers. comm. 5 May): - Basic chemistry: TDS, Na, Ca, Mg, K, CO3, HCO3, Cl, F, SO4, hardness and alkalinity - pH, colour and turbidity - nutrients: NH3, NO3, NO2, soluble P and DOC - metals (total and soluble): Al, Cd, Sb, Ni, Cu, Zn, Pb, Cr, Mn, Fe, As, Ba, Mo, Se, Hg, B, Ag, Be, I, CN, Sn, Zn, Br and U - radioactivity. ## 5 Target Well Aquifer Test Results #### 5.1 Aquifer Test Procedure The aquifer tests conducted on the Bool Lagoon Dilwyn Formation investigation / production well 7023-7371 (ROB037) consisted of a step drawdown test, a constant rate discharge test followed by recovery monitoring all in July 2014. Test details are given in Table 4 and the results are given in Appendix 9.4 and 9.5. The former Department for Water Groundwater Technical Services conducted the testing. Further development of the well was initially carried out during which pumping rates and groundwater levels were monitored. From this preliminary data, rates were selected for the step drawdown test. Groundwater samples were analysed at the Australian Water Quality Centre (AWQC). Water chemistry results are given in Appendix 9.9. Table 4 Aquifer test schedule | Test Type | Test Commence Date | Step / Stage | Duration (minutes) | Pumping rate (L/s) | |-------------------------|---------------------------|--------------|--------------------|--------------------| | Step drawdown | 18/07/2014 | 1 | 60 | 30 | | | | 2 | 60 | 40 | | | | 3 | 60 | 50 | | Constant rate discharge | 19/07/2014 | 1 | 4,320 | 50 | | Recovery | 22/07/2014 | - | 1,440 | - | #### 5.2 Step Drawdown Test Analysis of the step drawdown test results for the Bool Lagoon investigation / production well 7023-7371 (ROB037) (Figure 8) using the Hazel method applicable in sedimentary aquifer results in the following well equation: $$s(t) = 0.81 Q + 0.07 Q^2 + 0.05 \log (t) Q$$ The well equation can be used as a predictive tool for the range of pumping rates used in the step drawdown test and can probably be extended to higher pumping rates. Table 5 gives the predicted drawdown for 1,000,000 minutes (approximately 2 years) of continuous pumping at a range of pumping rates. While the theoretical available drawdown is 107 m, drawdowns are extremely small and this would obviously never be utilised. Table 5 Predicted drawdown Dilwyn Formation production well 7023-7371 (ROB037) | Pumping rate
(L/s) | *DTW (m) | Casing length
(m) | Theoretical
available
drawdown (m) | Duration
(mins) | Predicted
drawdown (m) | |-----------------------|----------|----------------------|--|--------------------|---------------------------| | 30 | 15.3 | 144 | 128 | 1,000,000 | 2.43 | | 40 | 15.3 | 144 | 128 | 1,000,000 | 3.34 | | 50 | 15.3 | 144 | 128 | 1,000,000 | 4.31 | ^{*}Measurement taken at start of step drawdown test and rounded to a whole number Dilwyn Formation Production well 7023-7371 (ROB037) step drawdown test analysis Hazel method Figure 8 #### **5.3** Constant Rate Discharge Test #### 5.3.1 Design The wells used in the constant rate discharge test are given in Table 6. The drawdown from the production and observation wells is given in Figure 9. The data from the observation well has been analysed to determine aquifer and aquitard hydraulic parameters. The locations of the observation wells was selected by SA Water and resulted in the principal observation well completed in the target aquifer, the Dilwyn Formation, being sited at a radial distance of 1,627 m from the Dilwyn Formation production well 7023-7371 (ROB037). At this distance the drawdown in minimal and may be influenced by other factors. This means that the results of the analysis, particularly in terms of the hydraulic resistance which is required to understand the hydraulic connection between the target Dilwyn Formation and the overlying Gambier Limestone, are less definitive than may have been the case if a closer observation well was available for use in the test. Table 6 Constant rate discharge test details | Well | Radial distance to production well (m) | Target Aquifer | |---------------------------------------|--|-------------------| | Production well 7023-7371 (ROB037) | 0 | Dilwyn Formation | | Observation well-3 7023-7370 (ROB036) | 1,627 | Dilwyn Formation | | Observation well 7023-7367 (ROB038) | 23 | Gambier Limestone | Figure 9 Constant rate discharge test drawdown all wells #### 5.3.2 Dilwyn Formation production Well 7023-7371 (ROB037), r = 0 m Drawdown and residual drawdown recorded during the constant rate discharge test and recovery are given in Figure 10. Figure 10 Dilwyn Formation production well 7023-7371 (ROB037) drawdown Drawdown versus time and residual drawdown versus t/t1 (where t is the time since pumping began and t1 is the time since pumping stopped) are given in Figure 11. The following general comments can be made: - A drawdown of 3.61 m developed during the test - The well equation determined from the step drawdown test accurately predicts the drawdown to within 1% of that observed at the end of the constant rate discharge test (Figure 12). - The specific capacity at the end of the test was 13.8 L/s per metre of drawdown - Well loss was 85% of drawdown at the end of the test - Recovery was monitored until the residual drawdown was within 1% of the total drawdown developed. Monitoring was terminated at 1,440 minutes. There is no evidence of dewatering as would be expected in the Dilwyn Formation which is an extensive regional confined aquifer. Figure 11 Dilwyn Formation production well 7023-7371 (ROB037) drawdown/residual drawdown Figure 12 Well equation prediction of Dilwyn Formation
production well 7023-7371 (ROB037) drawdown #### 5.3.3 Dilwyn observation well-3 7023-7370 (ROB036), r = 1,627 m Drawdown versus time and residual drawdown versus t/t1 are given in Figure 13. The following general comments can be made: - A drawdown of only 0.192 m developed during the test. This is consistent with the magnitude of drawdown calculated using the Theis equation and which would be expected to develop during the test conducted on a well completed in a confined aquifer. - The Dilwyn Formation exhibited a drawdown signature at the observation well consistent with a well confined aquifer - During the period of the test no hydraulic boundaries were evident Figure 13 Dilwyn Formation observation well-3 7023-7370 (ROB036) drawdown / residual drawdown #### 5.3.4 Gambier Limestone observation well 7023-7367 (ROB038), r = 23 m Drawdown versus time is given in Figure 14. The following general comments can be made: - A drawdown of -0.078 m developed during the aquifer test, with -0.1 m developing by the end of the recovery - This rise in groundwater levels is consistent with the Dilwyn Formation having a high level of well confinement - Groundwater level rose through the entire test indicating that pumping in the Dilwyn Formation was not affecting groundwater levels in the Gambier Limestone - The rising trend in the groundwater levels is consistent with a response to the falling barometric pressure during the test which indicates that the Gambier Limestone is not fully unconfined at this location - There no apparent response to pumping from the Dilwyn Formation Figure 14 Gambier limestone observation well 7023-7367 (ROB038) drawdown #### 5.3.5 Aquifer and aquitard hydraulic parameters Schlumberger Water Services AquiferTest Pro (Version: 2013.1) was used for analysis of the constant rate discharge test data. Hydraulic properties for the Dilwyn Formation aquifer and overlying aquitard determined from the analysis of the constant rate discharge test are given in Table 7. Drawdown data was corrected for barometric changes. The following general comments can be made: - The very high value of transmissivity averaging 6,120 m²/day is determined from the observation well. The value of 3910 m²/day determined from the Dilwyn Formation production well 7023-7371 (ROB037) should be used in calculations as the observation well is at such a great distance other influences on groundwater levels cannot be ruled out. - The storage coefficient between 2.8E-4 and 3.71E-4 can be considered acceptable - The drawdown data can be analysed with the Theis analysis method (Figure 15) for confined aquifers. The Theis analysis and the Hantush analysis indicate very similar results. - If the Hantush-Jacob analysis method for leaky confined aquifers is applied a value for the hydraulic resistance of 9.51E7 minutes (66,041 days) is obtained (Figure 16) which is extremely large and confirms the Dilwyn Formation has a high level of confinement in this area with minimal leakage expected to be occurring from the Gambier Limestone unconfined aquifer. Some caution needs to be applied when using the hydraulic resistance in calculations as the observation well is at such a great distance other influences on groundwater levels cannot be ruled out. Table 7 Aquifer and aquitard hydraulic parameters table format | Well | Radial
distance to
production
well (m) | T (m²/day) | S (-) | c (min) | Analysis
method | |---|---|------------|---------|---------|--------------------| | Dilwyn Fm. obs. well-3 7023-7370 (ROB036) | 1,627 | 6,700 | 2.80E-4 | - | Cooper-Jacob | | | | 5,970 | 3.58E-4 | - | Theis | | | | 5,690 | 3.71E-4 | 9.51E7 | Hantush | | Dilwyn Fm. prod. well 7023-7371 (ROB037) | 0 | 3910 | 1E-7 | | Cooper Jacob | Figure 15 Dilwyn Formation observation well-3 7023-7370 (ROB036) Theis analysis Figure 16 Dilwyn Observation well-3 7023-7370 (ROB036) Hantush analysis #### 5.4 Groundwater Salinity Groundwater salinity results are given in Figure 17 which indicates the salinity remained constant between 712 and 720 mg/L across 72 hours of pumping. The Gambier Limestone has a groundwater salinity of approximately 2,000 mg/L and the results indicate that no leakage is occurring from the unconfined aquifer to the Dilwyn Formation confined aquifer during the period of the aquifer test. Figure 17 Dilwyn Formation production well 7023-7371 (ROB037) groundwater salinity ## 6 Observation Well Aquifer Test Results #### 6.1 Aquifer test Procedure A constant rate discharge test followed by a brief period of recovery monitoring was conducted on each of the three Bool Lagoon investigation/observation wells completed in the Dilwyn Formation (Table 8). This work was undertaken in addition to the original program of work in order to determine changes in groundwater salinity during pumping. Test details are given in Table 8 and the results are given in Appendix 9.6, 9.7 and 9.8. Groundwater samples were analysed at the AWQC (Appendix 9.9). Table 8 Aquifer test details observation wells | Well | Test Type | Test Date | Duration
(min) | Pumping rate (L/s) | |---|-------------------------|------------|-------------------|--------------------| | Dilwyn Fm. obs. well-1 7023-7369 (KLN017) | Constant Rate discharge | 06/08/2014 | 1,440 | 20 | | Dilwyn Fm. obs. well-2 7023-7368 (KLN018) | Constant Rate Discharge | 09/08/2014 | 1,440 | 20 | | Dilwyn Fm. obs. well-3 7023-7070 (ROB036) | Constant Rate Discharge | 12/08/2014 | 480 | 20 | #### 6.2 Constant Rate Discharge Tests #### 6.2.1 Dilwyn Formation observation well-1 7023-7369 (KLN017) Drawdown versus time and residual drawdown versus t/t1 for the observation well is given in Figure 18. The drawdown data steady state immediately and cannot be used for determining aquifer hydraulic parameters. Groundwater salinity results are given in Figure 19 which indicates the salinity remained constant between 602 and 608 mg/L. Figure 18 Dilwyn Formation observation well-1 7023-7369 (KLN017) drawdown / residual drawdown 27 Figure 19 Dilwyn Formation observation well-1 7023-7369 (KLN017) groundwater salinity #### 6.2.2 Dilwyn Formation observation well-2 7023-7368 (KLN018) Drawdown versus time and residual drawdown versus t/t1 for the observation well is given in Figure 20. The drawdown data steady state immediately and cannot be used for determining aquifer hydraulic parameters. Groundwater salinity results are given in Figure 21 which indicates the salinity remained constant between 578 and 581 mg/L. Figure 20 Dilwyn Formation observation well-2 7023-7368 (KLN018) drawdown / residual drawdown Figure 21 Dilwyn Formation observation well-2 7023-7368 (KLN018) groundwater salinity #### 6.2.3 Dilwyn Formation observation well-3 7023-7370 (ROB036) Drawdown versus time and residual drawdown versus t/t1 for the observation well is given in Figure 22. The drawdown data steady state immediately and cannot be used for determining aquifer hydraulic parameters. Groundwater salinity results are given in Figure 23 which indicates the salinity remained constant between 700 and 695 mg/L. Figure 22 Dilwyn Formation observation well-3 7023-7370 (ROB036) drawdown / residual drawdown Figure 23 Dilwyn Formation observation well-3 7023-7370 (ROB036) groundwater salinity The results from the testing of the confined aquifer observation wells gives good agreement with the results calculated earlier for the production well and observation well. Each of the observation wells were equipped with a 6 m screen with a 0.5 mm aperture. Because the wells were very efficient, the production area or thickness of the aquifer for the purposes of calculating the Hydraulic conductivity has been assessed as 20 m. Table 9 shows that the transmissivities and hydraulic conductivities are high meaning that the confined aquifer in this area can produce strong water supplies at high efficiency. Table 9 Aquifer parameters for the three confined aquifer observation wells | Well | Aquifer Stage | T (m ² /d) | K (m/d) | |---|------------------|-----------------------|---------| | Dilwyn Fm. obs. well-1 7023-7369 (KLN017) | Aquifer pumping | 5540 | 277 | | | Aquifer recovery | 5424 | 271 | | Dilwyn Fm. obs. well-2 7023-7368 (KLN018) | Aquifer pumping | 2573 | 129 | | | Aquifer recovery | 6087 | 304 | | Dilwyn Fm. obs. well-3 7023-7370 (ROB036) | Aquifer pumping | 3678 | 184 | | | Averages | 4660 | 233 | # 7 Conclusions In summary the following conclusions are drawn from the investigations conducted at the Bool Lagoon observation wells: - 1. The five main wells in the drilling program were successfully completed, aquifer tests conducted and analysed, and samples collected for groundwater chemistry. - 2. The complex groundwater chemistry will be explained in a separate report by Innovative Groundwater Solutions 2015 - 3. The stratigraphy in the investigation area is fault controlled with the deeper confined sediments of the Dilwyn Formation occurring to the west of the uplifted Kanawinka Fault. - 4. The confined Dilwyn Formation in the area is generally composed of a coarse sand and aquifer tests resulted in small drawdowns indicating high aquifer transmissivity. - 5. Strata samples collected during drilling of all wells indicated an uninterupted and thick Dilwyn Formation sand sequence. In the previously drilled production well 7023-1850 (KLN010) this extended from 213 to 297 m (84 m). - 6. The unconfined Gambier Limestone and confined Dilwyn Formation in the investigation area show an observed groundwater head difference of 12 m indicating inter-aquifer leakage has a potential to occur from the unconfined to the confined aquifer. However, the markedly different groundwater salinities between aquifers indicate limited exchange is occurring. - 7. The aquifer test conducted on the Dilwyn Formation production well
7023-7371 (ROB037) provided information through interpreted transmissivity values, groundwater salinity data and groundwater head comparisons on the degree of confinement between the Dilwyn Formation and the overlying Gambier Limestone. - 8. The drawdown observed in the principal Dilwyn Formation observation well-3 7023-7370 (ROB036) indicated that the aquifer has a high level of confinment. This is supported by the drawdown results from the Gambier Limestone observation well 7023-7367 (ROB038) located 23 m from the production well which indicated a response to barometric changes rather than pumping. - 9. No groundwater salinity changes were evident during the aquifer tests conducted on the Dilwyn Formation production well 7023-7371 (ROB037) well or the observation wells, indicating that no leakage or mixing with other sources of groundwater occurred during the tesing period, supporting the assertion that the Dilwyn Formation has a high level of confinement. - 10. Dilwyn Formation observation well-2 7023-7368 (KLN018) had the lowest groundwater salinity (581 mg/L) of the investigation wells. - 11. The Dilwyn Formation production well 7023-7371 (ROB037) has a slightly higher salinity (720 mg/L) than the private irrigation wells located a little to the east with indicated salinities of about 650 mg/L. - 12. The investigation area has very high confined aquifer transissivity values, greater than most other areas in the region. - 13. The investigation area is a source of low salinity confined aquifer groundwater that could potentially supply the township of Naracoorte. # 8 Recommendations The following recommendations are made: - 1. In order to confirm the understanding of the hydraulic connection between the target the Dilwyn Formation and the overlying Gambier Limestone, an additional observation well could be drilled at close proximity to the Dilwyn Formation production well 7023-7371 (ROB037) and the constant rate discharge test repeated. It is however noted that the results obtained from the Gambier Limestone observation well 7023-7367 (ROB038) indicate that there is no hydraulic connection between the two aquifers which confirms the hydraulic resistance indicated from the Dilwyn Formation observation well-3 7023-7370 (ROB036). - 2. Further desktop studies could be undertaken in relation to the stratigraphy and hydrostratigraphy in the investigation area to better understand the fault conditions and aquifer variations that exist across the area. Data collected and displayed in this report is probably enough to make good future planning decisions. - 3. The Bool Lagoon investigation area can produce low salinity groundwater from the confined Dilwyn Formation, which could be developed as a town water supply wellfield to provide water for Naracoorte. The salinity varies between 580 mg/L (observation well 2) and 720 mg/L (Dilwyn Formation production well), which is below the ADWG recommendation that municipal supplies should have salinity less than 1000 mg/L. - 4. The Bool Lagoon investigation area can provide a secure water supply from the confined aquifer contained within the Dilwyn Formation. The production and observation wells demonstrate the following features that indicate a secure supply into the future including: - a. Thickness of the aquifer (> than 60 m) - b. Very high transmissivity rates (>3,500 m²/day), and - c. Small drawdown (<4 m for an pumping rate of 50 L/sec). # 9 Appendices 9.1 DRILLING CONTRACTOR WELL CONSTRUCTION REPORTS # **Dilwyn Formation production well 7023-7371 (ROB037)** | DR | ILLE | VERNI
RS WI
Natural | ELL C | ONST | RUC | TION | REP | ORT | | | 1. | PEF | MIT! | NO: | 2 | 31 | 3 9 | 6 | Si | e | |--|---|---------------------------|-----------------|-------------------------|---------------------------|-----------------------------|------------------------|-----------|-------------|----------|---------------|--------------|---------------------------------|-------------------------|---------|---|-----------------------------|----------|-------------|---------------------------------| | NAME
Contact P | | | | 046 | pech
8 91 | - | cence No | 131 | | | RMIT | | po | Bax | | 603 | s.A. Wat | | | | | Name of | plant op | erator if u | nder supe | ervision | | | | | | | MO | un | + G | amb | ries | _ S | Α | Post | Code | 5290 | | 2. LOC | A. S. T. L. V. S. S. | Sec. 100 (100) | SALT PROCE | | | | | 020-00 | | 3. | WELL | . N | ME | | | | | | | | | Date of S
GPS CO
AND D | OORDI | NATES | | | og. | | | G.P. | S | 4.
H | LAND | ID
or F | ENTIP
astoral | ICAT
Lease | ION | Rak | erison | 1 | | | | ☐ GI | | WGS8 | [6 | ZONE | 52 0 | 138
DZON | Æ 53 | UZ0 | NE 54 | | | | | | | 14.1 | 106 | | | | | 5. SUMN | tary (| Please ti | ck appro | | | | | | | _ | | | | | | | | | | | | Date work | | | | 8:5 | 5.200 | | | | | | ate work | Cor | nploted. | | | | 2014 | | | | | Work cars
Is this a R | | | Well W | if ups n | | Doepen
te rento | | number | Enlarg | 6 | | | | Rehal | bilitat | ь Ц | | Back | dill 1 | J | | | | | | | | 875ur330 | | | | | | | | | | | | | | | | Was well. | 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | Maximum | n Depth | Drilled | 515 | .(m) | Fi | nal Dep | th156 | (m) |) | Fi | nal Stan | ding | Water L | evel | | (m) | Final Yi | cld | 45_ | (L/sec) | | 6. DRILI | | | If no | t a drille | d well, pl | ease cor | | | 5.2, 9, 10, | | | | | | | | - | | - | | | 6.1 Coust | truction. | Details | Delline | Method | - | | 6.2 \ | Vater Cu | n Details | (ma | casurem | 100 | W. S. S. L. J. | ural sur | face | 100000000000000000000000000000000000000 | 0.1 m) | - | | | | From
(m) | Te
(m) | Diam
(mm) | Rotory
Down | Tool,
Auger,
Hole | (Air. | d Used
Water.
I Type) | | Date | From (m) | iter i | To
(m) | 1 | unding
Water
Level
(m) | Estima
Yiel
(L/sc | ld | Hole
Depth
at Test
(m) | Coring at
Test
(m) | | ket
thod | Solinity
(mg/L-) or
Taste | | 0 | 7 | 560 | | Ory | fa | C | | | (M) | 1 | (m) | | | | | 3335 | | | | | | | 145 | 380 | Rol | yap | Pa | C | | | | T | | | | | | | | | | | | 145 | 1515 | 258 | 201 | AN | 5.6 | a c | - | | - | 1 | | | _ | | | | | | | | | 7. CASIN | CIPP | TINIUE | 11 | | | | _ | _ | 1 | + | | - | | | | | - | | | | | 7.1 Dimer | | LHYNYL | | Type | | - 3 | 7.3 Casi | ng Cem | ented | | | | | | | | | - | | | | From
(m) | To
(m) | Inter
Dies
(mn | nal s
n. | well Joint
Steel, Fi | , Welded C
RP, PVC, et | | Yes M | | | To
m) | | ment
aga) | Wa
(litz | | | her
itives | Concuting
Method
Used | | c | minionis | | 0 | 144 | 25 | + | FRE | | | 87 0 | C | 11 | įų | 30 | 0 | 735 | so 3 | COM | Bent | Orill pie | 2 5 | % f | ent. | | 154-5 | 144.7 | | | 515h | | _ | | - | - | _ | + | | - | - | 00000 | | • | - | | | | 8. CONS | _ | | _ | _ | | _ | | _ | | _ | _ | _ | | | | | | - | _ | | | 8.1 Metho | | | | | | | | | sed give li | | | | | - | | | | | | | | ☐ Oper | n Hole | | | Type | | From
(m) | (m) | | mmi l | | r Diom
mm) | | ter Diam
(mm) | | Mate | fair | Trade Na | me | | ompletion
of Base | | ☐ Slott | | ng . | _ | Slee | | 144 | | 70 | -6 | | 38 | _ | 10 | 5 | - | eel | | | | 5Umg | | Scree | | | 3 | 15)e | 61 | 149-7 | 1154 | 516 | 1.0 | 1, | 18 | 2 | 10 | 10 | 13 | icel | John | SCU | En | cap. | | Othe | | | | Tera | 1.75 | To a | | | - | | 10.00 | 177.1 | American | 1.00 | | | | | - | шиноници | | 8.3 Lines | Section 10 | Depth | Internal | | ravel Pack
thod of | Gravel | Davine | From | То | ٦ | From | | ATION | LOG | _ | | - 10 max | KY 10 | 926 | | | Mater | rial | (m) | Diam.
(mm) | | perment | Mesh | | (m) | (m) | | (m) | | (m) | | | | Description o | ef Makes | ial | | | Rubbi | er | 141 | 203 | - | | | | | | | 0 | 9 | 1 | | _ | P 80 | | | | | | N 11000-100 | | | A Paris | _ | | _ | | | | | 1 | | 38 | | | e Sig | re | | | | | 9. IF NO | | | Length | Width | Diem | | ining | From | To | 7 | 35 | - | IIC_ | - | OC | | el - é | | 1 | | | 201100 | - | (m) | (m) | (m) | (m) | Ma | sterial | (m) | (m) | + | 110 | | 130 | | Ice | | clay 4 | C 3C | IOCI. | 5 | | | - | _ | - | | | | | _ | 1 | 1 | 130 | | 157 | | | vds. | ich? | | | | | 10. DEVI | ELOPM | ENT (Sta | e methods | and time t | inkent- | | | 174 | | 1 | 130 | | -11 | - | | -11) | | | | | | | | Met | | | | - | Hours | . 3 | limites | | | | | | | | | | | | | | | jel . | | | | - | - | | | 1 | _ | | | _ | | | | | | | | | _ | Airlie | _ | | | | 1 | - | | J | - | - | _ | - | _ | | | - | | | | II. PUMI | | EST (mea
Water | | Pomp | | | (0.1m)
Method of | 1 = = | Draw | 1 | | \dashv | | + | | | | | | | | From
(m) | To (m) | Level
(m) | Test
Method | Depth
(nt) | | c 1 | Mesouring
Discharge | Postpo | Down | | | | | | | | | | | | | | | | | | - | | _ | | - | 1 | | | | - | | _ | | | | | | - | _ | | | | 1 | - | | | - | 1 | | - | <u> </u> | - | | | | | | | | 12. SAMI
The provis | sion of th | e Natural I | Resource) | Manageme | ent Act 200 | 04 and B | Regulation | s require | that strato | 1 | | | | + | | | | | | | | and water | | | | | | 4 | | | | | | | | + | | | | | | | | As the per | | | and the same of | 600 | 1 | - Indiana | - | | DOM: | | | | | | | | | | | | | As the per | | ed Driller | 30 eest 13e0 | 1111 | 1// | | | Date 5 | 05/20 | 14 | | | | | | | | | | | | As the per
Signature of
Driller to
and well | of Licens
deliver | this copy | together | | iter samp | des colle | ected | | 05/20 | 14 | | | | | | | | | | | | | | wannan | | e Manag | | | 26.106 | | | | | | MIT N | | 2 9 | 3 3 | | SiteL | |-------------|------------------------|--------------------------------------|-----------------------|--------------------|-----------|-------------------------|-------------------------|------------------|------------------|--------------
-------------|---------------|------------------|-------------------------------|---|-----------------------------|----------------|--------------------------------| | | | CILLER
Johile No. | - CIV 9 | Pec
Comp | 9.0 | | | | 31725 | PE | al Addre | | PO F | box 6 | 203 | | | Corport | | | | | ander supe | rvision | | | | | | | M | out | it go | mbig | 5 | А. | Post Coc | 5290 | | | | 12.05 | 2014 Su | minimad b | . 1101 | A | Marko | | 05 | | | | | | | | | | | GPS (| COORD | INATES | | | | | | 1.50. | | | | | | CATION
ense: | | 0100 | | | | | DATUM | WGS84 | È | 376 | 43 | 06 | à | | | | | | | er | | | | | | | AGD 66/ | | | ZONE 5 | | | NE 53 | 0 | ZONE 5 | - 1 | | _ | | ectio | CONTRACTOR OF THE PARTY | | | | | | | | ck appro | | | l comp | | | | | | 2277 | | 11.5 | 2014 | | | | | | ork Comm
arried out | | 14.4
Well ☑ | 1 | | Deepe | | | E | | ate work | Com | | Rehabilita | | | Backfill | | | | 17. 3. 11. | | YES/NO | 3000 | 0.00 | 1.55 | | | | | | | | | | | | | | | | | ES/NO II | 234 | | | | nh2 | - | | Fi | nal Stane | ling \ | Water Le | el.15:42 | 2_(m) | Final Yie | 14. 20 | (L/sec) | | The second | LLING D | Name and Address of the Owner, where | lf no | t a drilled | well, ple | ase ee | - | _ | | , 10, 11, | 12 and | 13 as | necessar | у | | | | | | o.r Cor | struction | Details | | Method | - | 177. 1 | 0,2 | white | r Cut De | Water | | | noting | al surface | no nearest
Hole | | | 223 | | From
(m) | To
(m) | Diam
(mm) | Rotary | Auger. | (Air, | Used
Water,
Type) | | Date | - | inom | To | I. | Vator
avel | Estimated
Yield
(Lisec) | Depth
at Test | Casing at
Test
(m) | Test
Method | Solinity
(mg/L) or
Taste | | ^ | - | 200 | Hann | er, etc. | _ | , Mass | - | _ | | (m) | (m) | - | (m) | (Liset) | (m) | (00) | | raste | | 6 | 220 | 230 | - | HOLY | Pac | | | | | | | | | | | | | | | 220 | 234 | 161 | | locy' | pa | | | | | | | | | 1 | | | | 9 | | 7. CAS | ING LEE | T IN WE | LI. | | | | _ | | _ | _ | | _ | | | | _ | | | | 7.I Din | ensions | Inter | 7.2 | Type | | | 7.3 Ca | sing (| Cemented | | _ | _ | - | | | Post Contract | | | | From
(m) | Tu
(m) | Dia | m. 3 | Steel, FR | Welded O | allar,
e. | Yes 3 | Var | From
(m) | To (m) | | nont
(egs) | Water
(litres | | ther
litives | Cementing
Method
Used | | Comments | | 0 | 6 | 25 | | Ste | el | | | - | | | | | | | | 7000 | | | | 203 | 216 | 161 | | P.V. | | _ | ₩ [| - | 0 | 216 | 15 | 0 | 3615 | 150 K | 3 Bent | Dring | De 576 | Bent | | 231 | 233 | 100 | | P.V. | Č | | _ | ø | | | | | | | | | | | | | | TION AT | PRODUC | | | | C 17 15 25 1 | | | | | _ | | | | | | | | 8.1 Mc | noa
en Hole | | 8.2 Scree | en or Casi
Type | 0g (*11 V | Fron | | 0 | Aperture
(mm) | + Inne | r Diam | | er Diam | Mate | toint | Trade Nan | 10 | Completion
of Rose | | | otted Casi
reen(s) | ng | 5/5 | itee | | 225 | | all transport in | 0.5m | | 6 | 11 | - | 5 51 | èel | John | | m Samp | | 200 | her, give | lataile: | | Til SMOS | | | | | | | | N-V- | 11.0 | | | | [4] | th end co | | _ | er Seal (P. | | | 8.4 Gra | wel Pack | ing | | | | | 13. FO | RM | ATION I | .OG | | | | | | Ma | terial | Depth
(m) | Diam. | Meth
Place | | | Passing
h Size | Fac
(m | | To
m) | From
(m) | | To
(m) | | | Description of | Motorial | | | Ruy | bec | 203 | 100 | | 1150 | | | 35 | | | 0 | | 1 | | 5011 | | | | | Rul | phes | 206 | 100 | | | | | | | | 1 | - | 150 | 1000 | e sto | | 4.1 | ad's a | | | OT A DR | Depth | Length | Width | Diam | 1 | lning
interial | | nom | To | | + | | 40.000 | 16 30 | in Hac | | 102 -4 | | | | (m) | (m) | (m) | (m) | M | ectrist. | -0 | m) | (m). | 150 | 5 | 163 | area | en to | aren | mach | | | | | | AC P LUCKS | | 200720 | | | | | | 168 | | 194 | 480 | inds c | Pordu | A CIO | 14 4 SO | | 10. DE | VELOPA | | atu methods
thod | and time to | ken) | | Hours | | Minute | 10 | 212 | | 234 | 500 | - M | clay | | N. | | | Je | | | | | 1 | K | \perp | 30 | | | | | | | | | | | 11. PI: | | LiC+ | surcinents I | from paters | Surface s | o ne ne | 1 O 1 == 1 | 1 | 30 | | | + | | - | | | | | | Interv | d Tested | Water | Test | Pomp
Depth | Discha | rge | Method o | | Hours . | Draw
Down | | | | | | | | | | From
(m) | To
(m) | Level
(m) | Method | (m) | (L/se | | Mitasuring
Discharge | | amped | (m) | | 1 | | | | | | | | | | | | | - | + | | + | - | - | | + | | - | | | _ | | | | - 8 | | | | | | | + | | \dashv | | 1 | | | | | | | | | MPLES | | | | | | | 200 | 200 | | | | | | | | | | | | er samples | must be o | Resource bearingd. If | any sample | s have n | st been | obtained | state : | reasons: | strata | | - | | 8 | | | | | | | S pec | 1-10 | WSON. | Mt | -Gan | 10is | d sa dese | ribed : | shove | **** | | + | | | | | | | | | erenn rese | onsible I a | dvise that it | THE PROPERTY DATE | | | | | | | | | | | | | | | | As the p | | oneible I a | D) | ZW- | | | | | 15/5 | | | | | | | | | | # **Dilwyn Formation observation well-2 7023-7368 (KLN018)** | | | Natural | Resourc | ce Mana _l | RUCTIO | 2004 | STORY OF THE STORY | | | ERMIT | 3773 | 2 0 | 100 | 1 3 | ite | |--
--	--	--	--	--
--	---------------------------------	---	-------------	---------------------
RILLED V Depth (m) Me	8.2 Screens S S S S S S S S S S S S S S S S S S S	Sen or Casi Type 8.4 Gn Med Photo Width (m) s and time to	ing (#If varion 1) Peen I' avel Packing tod of Circuncin 1 Diam (m)	hlio aperture rom Tr (10) (a) 111-50 18 111-50 18 avel Passing desh Size Lining Material
--	---------------	------------	------------------	------------------
--	--	--	--	
--	---	--	--	--
Lining Material Hours	From (m)	To (m)	13. POI	RMATION To (m) 2
--	-------------------------------		From	То
greater depth as it was realised the well was still in the Mepunga sands. #### **Lithological Description**	Deptl	h (m)	Major Lith Unit(s)	Lithology
limestone content.			Deptl	h (m)
bounded clay. Minor fine sand	Clay Office (C1)		156	162
-------------	-----------------	--------------		1
1	2683	15.541	0.161	
-0.054		1	1670	2.409
20	100	23.18	6.83	
<0.0003	<0.0003		Bicarbonate	mg/L